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The solution of the problem of an orthotropic semi-infinite plate with straight boundary asymmetric with respect 
to  theelasticaxes of the materialhas beenobtained under the assumption that apart ofthe boundary near the origin is 
unifbrmly stfiemed and the rest is stress-free. The use of ~el-tranii Cayley's conformalmapping haa been made. 
In p~+ticalar, the solation P&s been obtaibed for the pfate with a concdntrateTforce. 

The plane problems of plates of orthotropic materials have been treated so far by many investiga- 
tors'-3, 7-9. These problems mainly qoncern with the domains symmetric with respect to the elastic axes 
of {the material. In other cases, :oay few'works hwe'been re@rtediupto the present by Lekhnitzkiia, 9, 

Moriguchi5, Washizu6, Haguchi4; Hayashilo, 11 etc. This is mainly due to the difficulties encountered 
in the treatment of the differential equations in the case of the plates of orthotropic wterials with symmetric 
elastic axes. 

On the other hand, the stress functions for the orthotropic plate are usually given as the sum of two 
harmonic functions in two functional planes. These problems can be reduced to simpler problems by the 
use of proper conformal mapping. In order to  find proper mapping functions, Beltrami Cayley's method 
can be used' conveniently. 

In this paper, problem has been solved by using Beltrami Cayley's conformal mapping. In partiouhr, 
the solution for- the plate with concentrated force has been deduced. 

S T A T E M E N T  O F  T H E  P R O B L E M  

We consider the small deformation of a semi-infinite plkte of orthotropic material with bomdary line 
inclined at  an angle a to its elastic axis (x-axis). We take the 6 - r ]  coordinates as shown in Fig. 1. Then 
the x-y coordinates are expressed as 

. . 
It is assumed that a part of the boundary (--a, a) is under the action of uniform pressure and the rest 

is stress-free. Therefore the boundary conditions on the real axis r ]  = 0 are given as 
c C 

P a, = -P 
- - - - - - - - *  a, = 0' _ _ _ - - - - -  I t'I > a 

-------- 
--...---- 741 = 0 - c o < E < ~  

__----i 

B U N D A M E N T A f i  F O R M U L A E '  

Considering the orthogonal coordinates x-y in an 
ort3otropic plate parallel to the elastic axes of the 

* material, the two-dimensional stress components are 
given asl0 

- - - -  
ax = - 

---- ------ 
n.----- 

UY = Real C f," (2,) +fa" (22) I 
- - - - -  797 = La [ P I ~ ?  ($1) _t pzf2" ( ~ 2 ) l  

Fig. 1-x-y ooordinab and 6-q coordinates. z j z x + i p j y y ,  j = l Y 2  J 
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wherefi are the stress functions of 3, dash denotes the differentiation with respect to zj? and p j  are the real 
or complex conjugate oonstants concerning the orthotropic property of the matend as shown below 

p? = 2 p12 3- pz2 = (Ea/GD?/) - 2 v~ 

where E,, Ey are the modulii of elasticity in x, y directions respectively, the modulus of rigidity, and 
v, the Poisson's rattio in x-direction. 

The stress components in 5-q directions inolined to the x-y axes at  an angle a (Kg. 1) are given,a 

u ( = - Real [ 2 (pj cos a + i sin x ) ~ # '  (zj) 

ja 1,2 

7 5 ~  = I, [ 2 (oos a + i p j  sin a) (pj 00s R + i sin R)#' (zj) ] 
i = l , 2  . 

where 2 means the summation for j= 1 and 2 .  

j =  I,2 

SOL'UTION OF  T H E  P R O B L E M  

Since the boundary line on the physical plane is given by (11, y on the functional plane of the stress 
' function take values 

Z j = ~ + i p ~ ~ = ( ~ ~ ~ ~ + i ~ ~ ~ a ) f ~ = $ ~ ( f j ) .  
. . (6) 

Therefore the transformation function +j  is defined as10 . 

I z j = # j ( f j J ,  f j = f j + i q j .  (6) 

It is obvious from (5 )  and (6) that the real axis q  = 0 in the f j  - plane corresponds to the boundary lhe  
in the physical plane and the following holis 

Comequently, rewriting the stress functions in terms of f j ,  the problem is transformed into a boundary 
value problem referring to the real axis on the 6 j  - plane. Hence the stress functions are given as 
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where the unknown constankaj (t) and bj(t) are given as , - ,  . . -  

aj ti!) = \ I F {  a? (u) sin u - T&(u) cos O( sin ut - 
" ( ~ j - P L  1 

-a0 

t 

ph { on (U'I 00s a + ~h (u) sin a sin ut du - . , . I  I 
where j = l , 2 ,  k =  l , 2  j # k. 

With the boundary condition (2), we find that 

2Pph cos a sin at 
aj ( t )  = -- 

77 ( p j - p k ;  . - t . (9) 

2P sin a sin at 
bj ( t )  = . -  

~ j - ~ k  ) t . - (lo) . 
Hence the stress functions obbained by putting the values of aj(t) and bj(t) from (9) and (10) in (8) are tl 
follows : 

2P(ph cos a+ i sin a 1 -1 
fjl'jzjl = 

n(p j  -pk) (COS a + ipjsin a )  (11). 

E X P R E S S I O N  F O R  E D G E  S T R E S S E S  

The stress components can be very easily evaluated with the help of the formulae (4) and the stress 
functions (11). However, on the edge of the plate for 5 3 a,'we have 

where 

.oa. The value of K remains constant for a partimhr plate 
but varies as a, the angle between the elastic axes 

.06 . of the material and the physical boundary line, takes 
-04 - differenh values. Bor an Oak plate with pl = 6/3, 

p2 =49/51, the value of H for different values of a 
.o 2-  

has been given below and graphically represented in 
x 0- Fig. 2. 

- .02 -  

- * 0 4 -  a 0 lt/6 a14 ?t/3 4 2  2n/3 3n/4 5 ~ / 6  n 

- . 0 6 -  , 3 

- .08 -  

-.to, K 0.00 0.14 0.87 0.16 0.00 -4 .16  -4.87 4 - 1 4  0.00 

Fig. 2-K vs a for an Oak plate K p l  = 613 and i 

a = 4elai. 



~ E D U C T I O N  O F  T H E  S O L U T I O N  F O R '  T H E  $LAT'E! ~ ' W ~ Z R  T.&E' A C T I O N  0%" 
N O R M A L  C O N C E N T R A T E D  F O R C E  A T  T H E  O R I G I N  

In caae, the plate is m d b ~  the acbio!Vzof a no'rmat conoentrabed F a t  Che origin, the solution may be 
very easily deduced from above by taking the limit as a ;. 0. While E' is given as 

The stress function6c (11) reduce to 

c t  , *P(-fiob'$a\+ t- inla): 
f jV(zj)  = n ( p j - p H )  (cosa + ipjsbcr \ i(j (13) 

The function (13) is in agreement with that . @ken , _  _ by Hayashito. L The stres$.components (12) reduce to 

I sincerely offer my gratefulness to Prof. G. Parea, D.h. ,  of Shri Covindram Seksaria Institute of 
Tephnology and Science, Indore (M.P.), for his kind guidance in the preparation of this paper. 
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