STUDIES IN SULPHONAMIDES-PART XII

Synthesis of 1, 3-diaryl-2-(N-substituted p-sulphamylbenzeneazo) propane-1, 3-diones and evaluation of their antibacterial properties

H. C. MUTREJA, G. S. SAHARIA & H. R. SHARMA

Department of Chemistry, University of Delhi, Delhi-110007

(Received 11 June, 1977)

Four new 1, 3-diarylpropane-1, 3-diones, 1-(m/p-nitrophenyl)-3-(p-ethylphenyl)- and 1-(m/p-nitrophenyl)-3-(p-ethoxyphenyl)-propane-1, 3-diones have been synthesised and coupled with a number of diazotised sulphonamide bases to yield the corresponding 1, 3-diaryl-2-(N-substituted p-sulphamylbenzeneazo) propane-1, 3-diones. These azo-compounds have been screened *in vitro* for their antibacterial properties against S. aureus, E. coli and P. pyocyanea.

In earlier papers the effect of chloro, bromo, methyl and methoxyl groups and the effect of exchanging the nitro group from meta to para positions when present in the phenyl rings of propane-1, 3-diones has been described^{1/2}. As an extension of this work, the present communication deals with the synthesis of four new β -diketones. With a view to compare the rates of coupling reactions, these β -diketone were made to react with differently substituted diazotised sulphonamide bases to give the corresponding 1,3diaryl-2-(N-substituted *p*-sulphamylbenzeneazo) propane-1, 3-diones. These azo-compounds were later subjected to *in vitro* screening against three micro-organisms.

During the course of this work it was observed that the rate of coupling reaction increased when the ethyl group present in the phenyl ring at the position-3 of the propane-1, 3-dione was replaced by an ethoxyl group thereby giving higher yields. The other observation was that the shifting of the nitro group from meta to the para position in the phenyl ring attached at position-1 of the propane-1, 3-dione caused an overall increase in the yields of the azo-compounds.

The yields of the azo-compounds ranged between 71 to 85%.

EXPERIMENTAL PROCEDURE

The following four new β -diketones were prepared by employing the standard method³.

1-(m-Nitrophenyl)-3-(p-ethylphenyl) propane-1, 3-dione

m-Nitrobenzaldehyde (0.06 mol) and *p*-ethylacetophenone (0.06 mol) were condensed in presence of aqueous sodium hydroxide to give *m*-nitrobenzylidene *p*-ethylacetophenone which was crystallised from ethanol as a light yellow solid, m. p. 120°.

(Found : C, 72.6; H, 5.4. $C_{17}H_{15}$ O $_{3}N$ requires C, 72.8; H, 5.3%).

This styryl ketone on bromination gave the dibromide, m.p. 120°, subsequent dehydrobromination and hydrolysis yielded 1-(*m*-nitrophenyl)-3-(*p*-ethylphenyl) propane-1, 3-dione, which on crystallisation from ethanol-glacial acetic acid mixture in light yellow needles had m.p. 127°.

(Found : C, 68.5; H, 5.2. $C_{17}H_{15}O_4N$ requires C, 68.7; H, 5.0%).

The ethanolic solution of this β -diketone gave a violet red colouration with aqueous ferric chloride-

1-(*p*-Nitrophenyl)-3-(*p*-ethylphenyl) propane-1, 3-dione

p-Nitrobenzaldehyde and p-ethylacetophenone were condensed in equimolecular quantities in presence of aqueous sodium hydroxide to give *p*-nitrobenzylidene *p*-ethylacetophenone which was crystallised from ethanol as a light yellow solid, m.p. 134° .

(Found : C, 72.5; H, 5.4. $C_{17}H_{15}O_3N$ requires C, 72.8; H, 5.3%).

This chalcone on bromination gave the corresponding dibromide, m.p. 118° and this dibromide on dehydrobromination and subsequent hydrolysis gave the required β -diketone, which on crystallisation from glacial acetic acid as a yellow solid had m.p. 169°.

(Found : C, 68.6; H, 5.2. $C_{17}H_{15}O_4N$ requires C, 68.7; H, 5.1%).

Its alcoholic solution gave violet red colouration with aqueous ferric chloride.

1-(m-Nitrophenyl)-3-(p-ethoxyphenyl) propane-1, 3-dione

m-Nitrobenzaldehyde (0.02 mol) and *p*-ethoxyacetophenone (0.02 mol) were condensed in presence of aqueous sodium hydroxide to furnish *m*-nitrobenzylidene *p*-ethoxyacetophenone which was crystallised from ethanol as a cream coloured solid, m.p. 113°.

(Found : C, 68.9; H, 5.0. $C_{17}H_{15}O_{4}N$ requires C, 68.7; H, 5.0%).

Its dibromide, m.p. 126° was dehydrobrominated and hydrolysed to give 1-(*m*-nitrophenyl)-3-(*p*-etho xyphenyl) propane-1, 3-dione which was crystallised from ethanol-glacial acetic acid mixture and had m.p-143°.

(Found : C, 65.0, H, 4.7. $C_{17}H_{15}O_{5}N$ requires C, 65.2; H, 4.8%).

The alcoholic solution of this β -diketone gave a violet red colouration with aqueous ferric chloride.

1-(p-Nitrophenyl)-3-(p-ethoxyphenyl) propane-1, 3-dione

Condensation of *p*-nitrobenzaldehyde and *p*-ethoxyacetophenone in equimolecular quantities in presence of aqueous sodium hydroxide gave *p*-nitrobenzylidene *p*-ethoxyacetophenone; on crystallisation from ethanol it had m.p. 159°.

(Found : C, 68.5; H, 5.0. $C_{17}H_{15}O_4N$ requires C, 68.7; H, 5.0%).

The dibromide of the above styrylketone having m.p. 148°, was dehydrobrominated and hydrolysed to give the corresponding β -diketone, which was crystallised from glacial acetic acid in yellow needles m.p. 159°.

(Found : C, 65.3; H, 4.6. $C_{47}H_{15}O_{4}N$ requires C, 65.2; H, 4.8%).

Its alcoholic solution gave a violet red colouration with aqueous ferric chloride.

All the N \pm -substituted sulphanilamides required for this work were prepared by the standard methods⁴⁻¹⁸.

MUTREIA, et. al. : Studies in Sulphonamides-Part XII

Synthesis of 1, 3-diaryl-2-(N-substituted p-sulphamylbenzeneazo) propane-1, 3-diones

An ice cold solution of 1, 3-diarylpropane-1, 3-dione (0.002 mol) in acetone containing sodium acetate was mechanically stirred and a diazotised solution of the sulphonamide (0.002 mol) was added duting stirring at 0-5°. The reaction mixture was further stirred and the azo-compound obtained by the addition of ice-cold water was filtered, washed with water, and dried. *Pure* 1, 3-*diaryl*-2-(*N*-substituted p-sulphamylbenzeneazo) propane-1, 3-dione (I) was crystallised from ethanol or glacial acetic acid or DMF or a mixture of any two-of these solvents. These azo-compounds are entered in Tables 1 to 4.

EVALUATION OF THE ANTIBACTERIAL PROPERTIES

These azo-compounds have been tested in vitro against three micro-organisms S. aureus, E. coli and P. pyocyanea at two different concentrations of 250 μ g/ml and 500 μ g/ml using the cup-plate agar diffusion method and the results with the concentrations of 250 μ g/ml are also entered in Tables 1=4.

TABLE 1

1-(m-Nitrophenyl)-3-(p-ethylphenyl)-2-(N-substituted (p-sulphamylbenzeneazo) propane-1, 3-diones

$$A: X = m - NO_3; Y = p - C_2 H_5$$

S.	•	MD	Co-	Yi-	Malegular	СН	СН	Antibacterial	properties
140.	R	(°C)	Tour	(%)	formula	(Found) (%) (%)	(Requires) (%) (%)	S. E. aureus. coli	Р. руо-
	·							· · · · · ·	cyanea
1.	H a a	206	Y	75	C23H20O6N4S	57.4 4.0	57.5 4.2	· (+) (→)	(+)
2.	Acetyl	165	: Y	72	C25H22O7N4S	57.5 4.4	57.5 4.2	· () ()	()
3.	Phenyl	204	Y	72	C29H24O6N4S	62.3 4.3	62.6 4.3	() ()	(++)
4.	o-Methylphenyl	199	Y	71	C ₃₀ H ₂₆ O ₆ N ₄ S	63.0 4.5	63.2 4.6	(++) ()	(+++)
5.	m-Methylphenyl	198	Υ	74	C30H26O6N4S	63.2 4.5	63.2 4.6	· · · () · · · ()	(+)
6.	p-Methylphenyl	205	Y	77	C30H26O6N4S	63.5 4.8	63.2 4.6	(+) ()	(++)
7.	o-Chlorophenyl	216	Y	79	C24H23O6N4CIS	59.1 4.0	59.0 3.9	(++) (+)	, ()
8.	m-Chlorophenyl	215	Y	78	C ₂₉ H ₂₃ O ₈ N ₄ ClS	59.3 4.0	59.0 3.9	(+) (+)	(++)
9.	p-Chlorophenyl	218	Y	80	CasHasOsN4CIS	58.9 3.7	59.0 3.9	· · · · · · · · · · · · · · · · · · ·	- (+)
10.	p-Bromophenyl	226	Y	82	CasHasOaN4BrS	55.0 3.6	54.8 3.6	···· (+) (+)	(+)
11.	Guanidyl	185	Y	76	C24H22O6N5S	55.4 4.1	55.2 4.2	(+) (+)	(++)
12.	a-Pyridyl	237	Y	76	C28H23O6N6S	60.0 4.0	60.3 4.1	(++) (+)	· · ()
13.	2-Pyrimidinyl	245	YR	80	C ₂₂ H ₂₂ O ₆ N ₅ S	58.1 4.2	58.3 3.9	(+) (+)	(+)
14.	2,6-Dimethyl-4 pyrimidinyl	249	Y	76	C ₂₉ H ₂₂ O ₆ N ₆ S	59.5 4.5	59.4 4.4	() (+++)	(++)
15.	4,6-Dimethyl-2- pyrimidinyl	233	Y	78	C ₂₉ H ₂₆ O ₆ N ₆ S	59.2 4.4	59.4 4.4	() (+)	(+)
16.	2,6-Dimethoxy-4- pyrimidinyl	135	Y	75	C29H26O8N6S	56.1 4.3	56.3 4.2	(++) (++)	(+)
17.	5-Methyl-1,3,4- thiadiazol-2-yl	207	Y	77	$C_{26}H_{22}O_6N_6S_2$	54.3 3.6	54.0 3.6	(++) (++)	(+)

DEF. Sci. J., Vol. 30, JANUARY 1980

TABLE 2

1-(p-NITROPHENYL)-3-(p-ETHYLPHENYL)-2-(N-SUBSTITUTED p-SULPHAMYLBENZENEAZO)=PROPANE-1, 3, DIONES

S. No.	T ,	M.P.	Co-	Yi-	Molecular formula	C	C H		H	Antibacterial properties			
		(°C)	lour	(%)		(%)	(%)	(Keqt (%)	(%)	S. aureus	E. coli	P. pyo- cyanea	
1.	Н	234	YSN	74	C22H20O6N4S	57.6	4.2	57.5	4.2	(++++)	(+)	(++)	
2.	Acetyl	228	Y	76	C ₂₅ H ₂₂ O ₇ N ₄ S	57.8	4.1	, 57.5	4.2	(+)	(+)	(+)	
3.	Phenyl	221	Y	78	$C_{29}H_{34}O_{6}N_{4}S$	62.4	4.1	62.6	4.3	(+++)	(+)	(+++)	
4.	<i>p</i> -Methylphenyl	222	Y	80	C ₃₀ H ₂₆ O ₆ N ₄ S	63.0	4.8	63.2	4.6	(++++)	(+)	(+++)	
5.	o-Chlorophenyl	190	Y	82	C ₂₉ H ₂₃ O ₆ N ₄ ClS	59.2	4.0	59.0	3.9	(+++)	(+++)	(+)	
6.	m-Chlorophenyl	187	YBN	77	C ₂₉ H ₂₃ O ₆ N ₄ ClS	59.1	4.2	59.0	. 3.9	(++)	(+++)	· (—)	
7.	p-Chlorophenyl	245	Y	83	C ₂₃ H ₂₃ O ₅ N ₄ ClS	58.9	3.9	59.0	3.9	(+++)	(++)	(+)	
8.	p-Bromophenyl	248	Y	84	C ₂₉ H ₂₃ O ₆ N ₄ BrS	55.0	3.7	54.8	3.6	(++++)	(+)	()	
9.	Guanidyl	253	YB	77	C ₂₇ H ₂₂ O ₆ N ₆ S	55.2	4.1	55.2	4.2	(+)	(+)	(+)	
10.	2-Pyriimidinyl	248	Y	81	$C_{27}H_{22}O_6N_6S$	58.0	4.0	58.1	3.9	(+)	· (+)	(+)	
11.	2,6-Dimethyl-4- pyrimidinyl.	204	Y	78	$C_{29}H_{26}O_6N_6S$	59.5	4.3	59.4	4.4	(+)	()	(+++)	
12.	4,6-Dimethyl-2- pyrimidinyl	215	Y	81	C29H26O6N6S	59.3	4.4	59.4	4.4	(+ +)	(+)	(+)	
13.	2,6-Dimethoxy-4- pyrimidinyl .	233	Y	75	$C_{29}H_{26}O_8N_6S$	56.3	4.1	56.3	4.2	(+)	(++)	(+)	

$(A : X = p-NO_2, Y = p-C_2H_5)$

TABLE 3

1-(m-Nitrophenyl)-3-(p-ethoxyphenyl)-2-(N-substituted p-sulphamylbenzeneazo) propane-1, 3-diones

 $(A : X = m - NO_2; Y = p - OC_2H_5)$

	an a		СН		СН		Antibacterial Properties					
S. No.	R	М.Р. (°С)	Co- lour	Yi- eld (%)	Molecular formula	For (%)	und (%)	Requ (%)	Requires (%) (%)	S. aureus	E. coli	P. pyo- cyanea
1.	Н	199	YO	77	C23H20O7N4S	55.1	3.9	55.6	4.0	(+)	(—)	(+)
2.	Acetyl	156	Y.	74	$C_{25}H_{22}O_8N_4S$	55.6	4.1	55.7	4.1	()	()	(+)
3.	Phenyl	200	YS	76	$C_{29}H_{24}O_7N_4S$	61.0	4.2	60.8	4.2	()	()	()
4.	o-Methylphenyl	187	YOS	74	$C_{80}H_{26}O_7N_4S$	61.4	4.5	61.4	4.4	(—)	(—)	(+)
5.	m-Methylphenyl	190	YO	77	$C_{30}H_{26}O_7N_4S$	61.3	4.4	61.4	4.4	(+++)	()	(+)
6.	p-Methylphenyl	222	0	79	C ₈₀ H ₂₆ Q ₇ N ₄ S	61.1	4.6	61.4	4.4	()	()	(—)
7.	o-Chlorophenyl	199	SO	77	$C_{29}H_{23}O_7N_4S$	57.4	4.0	57.4	3.8	(+)	(+)	(++)
8.	m-Chlorophenyl	196	SY	79	C ₂₉ H ₂₃ O ₇ N ₄ ClS	57.3	3.9	57.4	3.8	()	(+)	(—)
9.	p-Chlorophenyl	242	YO	80	C ₂₉ H ₂₃ O7N4ClS	57.3	3.7	57.4	3.8	(+++)	(+)	(+)
10.	p-Bromophenyl	239	Y	84	C29H28O7N4BrS	54.0	3.5	53.9	3.5	(++)	(+)	(++)
11.	Guanidyl	251	YO	76	$C_{24}H_{22}O_7N_6S$	53.2	4.0	53.4	4.1	(++++)	(+)	(+++)
12.	a-Pyridyl	170	Y	75	C ₂₈ H ₂₃ O ₇ N ₅ S	58.4	4.2	58.4	4.0	(++)	(++)	(+)
13.	2-Pyrimidinyl	218	YO	81	C27H22O7N6S	56.4	4.0	56.5	3.9	(+)	(+)	()
14.	2,6-Diimethyl-4- pyrimidinyl	220	Y	78	$C_{29}H_{26}O_7N_6S$	57.8	4.4	57.8	4.3	()	()	()
15.	4,6-Dimethyl-2- pyrimidinyl	215	Y	80	$C_{29}H_{26}O_7N_6S$	57.7	4.3	57.8	4.3	(—) ₁	(+)	()
16.	2,6-Dimethoxy-4- pyrimidinyl	138	Y	77	C ₂₉ H ₂₆ O ₈ N ₆ S	60.0	4.0	59.9	4.1	()	(+)	(+)
17.	5-Methyl-1,3,4- thiadiazol-2-yl	167	Y	78	$C_{26}H_{22}O_7N_6S_2$	52.4	3.8	52.5	3.7	(++)	()	()

MUTREJA, et. al. : Studies in Sulphonamides-Part XII

TABLE 4

1-(p-Nitrophenyl)-3-(p-ethoxyphenyl)-2-(N-substituted p-sulphamylbenzeneazo) propane-1, 3-diones

 $(A : X = p - NO_2 ; Y = p - OC_2 H_5)$

-	R			\$7!	C H		C	H	Antibacterial properties			
S. No.		м (%	.P. Co loi C)	o- 11- ur eld (%)	formula	(%)	(%)	(%)	(%)	S. aureus	E. coli	P. pyo- cyanea
1.	н	221	YO	78	$C_{23}H_{20}O_7N_4S$	55.5	4.1	55.6	4.0	(+)	()	(+)
2.	Acetyl	127	Y	76	C25HanO8N4S	55.3	4.1	55.7	4.1	()	()	()
3.	Phenyl	203	Y	79	C29H24O7N4S	61.0	4.1	60.8	4.2	(+)	· () ·	(+)
4.	o-Methylphenyl	208	¥O	75 °	C ₃₀ H ₂₆ O ₇ N ₄ S	61.4	4.5	61.4	4.4	()	(+)	()
5.	<i>m</i> -Methylphenyl	215	Y	77	C ₅₀ H ₃₄ O ₇ N ₄ S	61.6	4.5	61.4	4.4	()	(+)	(—)
6.	p-Mothylphenyl	213	Y	80	C ₃₀ H ₂₆ O ₇ N ₄ S	61.3	4.4	61.4	4.4	()	()	(+)
7.	o-Chlorophenyl	186	Y	79	C ₂₉ H ₂₃ O ₇ N ₄ CIS	57.5	4.0	57.4	3.8	(+)	(+)	(+)
8.	m-Chlorophenyl	188	Ŷ	79	C29H23O7N4ClS	57.4	3.9	57.4	3.8	(+)	(+)	(++)
9.	p-Chlorophenyl	246	Y	82	C ₂₀ H ₂₃ O ₇ N ₄ ClS	57.3	4.0	57.4	3.8	(++)	(+)	(+)
10.	p-Bromophenyl	240	Y	85	C ₂₉ H ₂₃ O ₇ N ₄ BrS	53.7	3.6	53.9	3.5	(++)	(+)	()
11.	Guanidyl	275-6	ο	78	C24H22O7N6S	53.4	4.4	53.4	4.1	(++++)	(+)	(+)
12.	y-pyridyl	233	Y	76	$C_{28}H_{23}O_7N_5S$	58.5	4.2	58.4	4.0	(++)	(+)	(++)
13.	2-Pyrimidinyl	233	Y	82	C27H22O7N6S	56.4	4.0	56.5	3.9	(+)	` (+)	(+)
14.	2,6-Dimethyl-4- pyrimidinyl	148	Y	79	$C_{29}H_{26}O_7N_6S$	57.9	4.1	57.8	4.3	(—)	(—)	(+++)
15.	5-Methyl-1,3,4- thiadiazol-2-yl	201	YO	' 77	$C_{26}H_{22}O_7N_6S_3$	52.5	3.8	52.5	3.7	(++)	(++)	(+++)

B='Brown'; F='Flakes'; N='Needles'; O='Orange'; R='Red'; S='Shining'; Y='Yellow'.

1, 3-Diaryl-2-(N-substituted *p*-sulphamylbenzeneazo) propane-1, 3-diones in general exhibited activity against all the three micro-organisms. If these results were compared among themselves it became evident that the replacement of an ethyl group by an ethoxyl group in the phenyl ring attached at position-3 of the propane-1, 3-dione, caused a decrease in the activity except in a few cases. However, if a nitro group was changed from the meta to the para position, the azo-compounds by and large showed considerable increase in activity especially against S. aureus and E. coli which is in confirmation of earlier inferences¹.

Again, if the results were compared on the basis of changes made in the substitution pattern of the sulphonamide moiety, keeping the substituents in the phenyl rings attached at positions-1 and 3 unaltered, it was observed that the replacement of the methyl group by a halogen atom in the phenyl ring attached at N^1 of the sulphonamides, the activity against *S. aureus* and *E. coli* increased. However, the replacement of the phenyl ring of the sulphonamide residue attached at position N^1 by a heterocyclic ring caused an increase in activity against *S. aureus* and *E. coli*.

DEF. Sci. J., Vol. 30, JANUARY 1980

REFERENCES

- 1. KABRA, AJAYA (MRS,), SAHARIA, G. S. & SHARMA, H. R., Def. Sci. J., 25 (1975) 25 & 145.
- 2 SAHARIA, G. S. & SHARMA, H. R., Def. Sci. J., 22 (1972), 135.
- 3. BARNES, R. P. & DODSON, L. B., J. Amer. Chem. Soc., 65 (1943), 181585.
- 4. GELMO, P., J. Prakt. Chem., 77 (1908), 369.
- 5. CROSSLEY, M. L., NORTHEY, E. H. & HULFQUIST, M. E., J. Amer. Chem. Soc., 61 (1939), 2950; 62 (1940), 372.
- 6. MARSHALL, E. K., Jr., BRATTON, A. C., WHITE, H. J. & LITCHFIELD, J. T., Jr., Bull. Johns Hopkins Hosp., 57 (1940),
- 7. ROBLIN, R. O., Jr. WILLIAMS, J. H., WINNEK, P. S. & ENGLISH, J. P., J. Amer. Chem. Soc., 62 (1940), 2002; 64 (1942), 568.
- 8. ROBLIN, R. O., Jr. & WINNEK, P. S., J. Amer. Chem. Soc., 62 (1940), 1999.
- 9. HARTMANN, M., GUENI, F., DRUEY, J. & MEYENBERG, H. V., U. S. Pat. 2, 386, 852, (1945), Chem. Abst., 40 (1946), 5532.
- 10. Rose, F. L. & Swain, G., J. Chem. Soc., (1945), 689.
- 11. BIRTWELL, S., HOWARTH, E. ROSE, F. L., SWAIN, G. & VASEY, C. H., J. Cham. Soc., (1946), 491.
- 12. WINNEK, P. S. & FAITH, H. F., U. S. Pat., 2, 380,005 (1945), Cham. Abst. 33 (1945), 54107.
- 13. HUBNER, O., U. S. Pat., 2 447,702; (1948), Chem. Abst., 42 (1948), 8823.
- 14. HARTMANN, M. & MEYENBERG, H. V., U. S. Pat., 2, 435,002; (1948), Chem. Abst., 42 (1948), 4203.
- 15. LOOP, W. & LUHRS, E., Ann., 580 (1953), 225.

- 16. KLOETZER, W. & BRETSCHNEIDER, H., Monatsh., 87 (1956), 136.
- 17. MERCHANT, C., LUCAS, C. C., MCCLELLAND, L. & GREEY, P. H., Can. J. Research, 20B (1942), 5
- 18. SCHMIDT, L. H. & SESLER, C. T., J. Pharmacol., 87, (1946), 313.