FOURIER SERIES FOR FOX'S H-FUNCTION OF TWO VARIABLES

C. K: SḢarma
S. A.Tech. Institute, Vidisha (M.P.)

(Received 8 July 1971 ; revised 17 November 1971)
An attempt has heen made to derive a Fourier series expansion for the H-function of two variables recently defined by Verma. This series is analogous to that of other special functions such as the MacRobert's E-function, Meijer's G-function and Fox's H-function of single variable as given by MacRobert, Kesarwani, Parihar, Parashar, Kapoor \& Gupta. In the end an integral has been evaluated by making use of this result.

MacRobert ${ }^{1}$, Kesarwani ${ }^{2}$, Parihar ${ }^{3}$ established the Fourier series for the E - and G-function and in the recent paper Parashar ${ }^{4}$, Kapoor \& Gupta ${ }^{5}$ has proved Fourier series for Fox's H-function of single variable. However the Fourier series expansion for H-function of two variables has not been derived so far.

The following Fourier series expansion is proposed to be established :

$$
\begin{align*}
& \sum_{r=0}^{\infty} \frac{(k+r)!}{k!r \dagger} H^{n, \nu_{1}+1, \nu_{2}, m_{1}+2, m_{2}}\left[\begin{array}{l}
p,\left(t+3: t^{\prime}\right), s,\left(q+3: q^{\prime}\right)
\end{array}\left\{\begin{array}{l}
x\left(\begin{array}{l}
\left.a_{p}, e_{p}\right) \\
(r, h),\left(\gamma_{t}, c_{t}\right),(0, h) ;(-k-r-1, h) ;\left(\gamma^{\prime} t^{\prime}, c_{t^{\prime}}^{\prime}\right) \\
\left(\delta_{s}, d_{s}\right) \\
\left(1+\frac{k}{2}, h\right),\left(\frac{3}{2}+\frac{k}{2}, h\right),\left(\beta q, b_{q}\right),(1, h) ;\left(\beta_{q^{\prime}, b^{\prime}}^{\prime}\right)
\end{array}\right] \sin (k+2 r+1) \theta .
\end{array}\right]\right. \\
& =\sqrt{\frac{\pi}{2}} \sum_{u=0}^{k} \frac{\sin \theta(\cos \theta-1)}{u!(k-u)!} H_{p,\left(t+2 ; t^{\prime}\right), s,\left(q+2: q^{\prime}\right)}^{n, \nu_{1}, \nu_{2}, m_{1}+2, m_{2}}\left[\begin{array}{c}
\frac{x}{\sin ^{2 h} \theta} \theta \\
y^{2}
\end{array} \begin{array}{l}
\left(\begin{array}{l}
\left(a_{p}, e_{p}\right) \\
\left(\gamma_{t}, c_{t}\right),(0, h),\left(-\frac{1}{2}-u, h\right) ;\left(\gamma_{i^{\prime}}^{\prime}, c_{t^{\prime}}^{\prime}\right) \\
\left(\delta_{s}, d_{s}\right) \\
\left(1+\frac{k+u}{2} h,\right. \\
\left(\beta_{q^{\prime}}^{\prime}, b_{q^{\prime}}^{\prime}\right)
\end{array}\right),\left(\frac{3}{2}+\frac{k+u}{2}, h\right),\left(\beta_{q^{\prime}}, h_{q}\right) ;
\end{array}\right] \tag{1}
\end{align*}
$$

where $0<\theta<\pi, T \equiv \sum_{1}^{n} e_{j}+\sum_{1}^{\nu_{1}} c_{j}+\sum_{1}^{m_{1}} b_{j}-\sum_{n+1}^{p} e_{j}-\sum_{1}^{s} d_{j}-\sum_{\nu_{2}+1}^{t} c_{j}-\sum_{m_{1}+1}^{q} b_{j}>0,|\arg x|<\frac{1}{2} T \pi$, and

$$
T^{\prime} \equiv \sum_{1}^{n} e_{j}+\sum_{1}^{\nu_{2}} c_{j}^{\prime}+\sum_{1}^{m_{2}} b_{j}^{\prime}-\sum_{n+1}^{p} e_{j}-\sum_{1}^{s} d_{j}-\sum_{v_{2}+1}^{t^{\prime}} c_{j}^{\prime}-\sum_{m_{2}+1}^{q^{\prime}} b_{j}^{\prime}>0,|\arg y|<\frac{1}{2} T^{\prime} \pi
$$

Fox's H-function of two variables recently introduced by Verma ${ }^{6}$ which is an extension of G-function of two variables defined by Agarwal'. This H-function of two variables does not only includes Fox's H-function and the Meijer's G-function of single variables as particular cases but also most of special functions of two variables, e.g., Appell's functions, the Whittaker function of two variables etc.

Thus Fox's H-function of two variables due to Verma ${ }^{6}$ will be defined as follows:

$$
H_{p,\left(t: t^{\prime}\right), s,\left(q: q^{\prime}\right)}^{n, \nu_{1}, \nu_{2}, m_{1}, m_{2}}\left[\begin{array}{l}
x \tag{2}\\
y
\end{array} \left\lvert\, \begin{array}{l}
\left(a_{p}, e_{p}\right) \\
\left(\dot{\gamma}_{t}, c_{t}\right) ;\left(\gamma_{t^{\prime}}^{\prime}, c_{q^{\prime}}^{\prime}\right) \\
\left(\delta_{s}, d_{s}\right) \\
\left(\beta_{q}, b_{q}\right) ;\left(\beta_{q^{\prime}}^{\prime}, b_{q^{\prime}}^{\prime}\right)
\end{array}\right.\right]=\frac{1}{(2 \pi i)^{2}} \int_{-i \infty}^{i \infty} \int_{-i \infty}^{i \infty} \phi(\xi+\eta) \psi(\xi, \eta) x \xi y^{\eta} d \xi d \eta
$$

where

$$
\phi(\xi+\eta)=\frac{\prod_{j=1}^{n} \Gamma\left(1-a_{j}+e_{j} \xi+e_{j} \eta\right)}{\prod_{j=n+1}^{p} \Gamma\left(a_{j}-e_{j} \xi-e_{j} \eta\right) \prod_{j=1}^{s} \Gamma\left(\delta_{j}+d_{j} \xi+d_{j} \eta\right)}
$$

$\psi(\xi, \eta)=\frac{\prod_{j=1}^{m_{1}} \Gamma\left(\beta_{j}-b_{j} \xi\right) \underset{j=1}{\nu_{1}} \Gamma\left(\gamma_{j}+c_{j} \xi\right) \prod_{j=1}^{m_{2}} \Gamma\left(\beta_{j}^{\prime}-b_{j}^{\prime} \eta\right) \underset{j=1}{\prod_{2}^{\prime}} \Gamma\left(\gamma_{j}^{\prime}+c_{j}^{\prime} \eta\right)}{\prod_{j=m_{1}+1}^{q} \Gamma\left(1-\beta_{j}+b_{j} \xi\right) \underset{j=\nu_{1}+1}{\prod} \Gamma\left(1-\gamma_{j}-c_{j} \xi\right) \underset{j=m_{2}+1}{\eta_{1}^{\prime}} \Gamma\left(1-\beta_{j}^{\prime}+b_{j}^{\prime} \eta\right) \prod_{j=\nu_{2}+1}^{\ell_{1}^{\prime}} \Gamma\left(1-\gamma_{j}^{\prime}-c_{j}^{\prime} \eta\right)}$,
and

$$
0<m_{1} \leqslant q, 0 \leqslant m_{2}<q^{\prime}, 0<\nu_{1}<t, \theta \ll \nu_{2} \leqslant t^{\prime}, 0<n<p
$$

The sequence of parameters $\left(\beta_{m_{1}}, b_{m_{1}}\right),\left(\beta_{m_{2}}^{\prime}, b^{\prime} m_{2}\right),\left(\gamma_{\nu_{1}}, c_{\nu_{1}}\right),\left(\gamma^{\prime} v_{\mathrm{a}}, c_{\nu_{9}}^{\prime}\right)$ and $\left(a_{n}, e_{n}\right)$ are such that none of the poles of integrand coincides. The paths of integration are indented, if necessary, in such a manner that all the poles of $\Gamma\left(\beta_{j}-b_{j} \xi\right), j=1,2, \ldots, m_{1}$ and $\Gamma\left(\beta_{k}^{\prime}-b^{\prime}{ }_{k} \eta, k=1,2, \ldots, m_{2}\right.$ lie to the right and those of $\Gamma\left(\gamma_{j}+c_{j} \xi\right), j=1,2, \ldots, \nu_{1}, \Gamma\left(\gamma_{k}^{\prime}+c_{k}^{\prime} \eta\right), k=1,2, \ldots, \nu_{z}$ and $\Gamma\left(1-a_{j}+e_{j} \xi+e_{j} \eta\right) ; j=1,2, \ldots, n$, lie to the left of imaginary axis.

The integral (2) converges if

$$
T \equiv \sum_{1}^{m} e_{j}+\sum_{1}^{\nu_{1}} c_{j}+\sum_{1}^{m_{1}} b_{j}-\sum_{n+1}^{p} e_{j}-\sum_{1}^{s} d_{j}-\sum_{v_{1}+1}^{t} c_{j}-\sum_{m_{1}+1}^{q} b_{j}>0,|\arg x|<\frac{1}{2} T \pi
$$

and

$$
T^{k}=\sum_{1}^{n} e_{j}+\sum_{1}^{v_{2}} c_{j}+\sum_{1}^{m g} b_{j}^{\prime}-\sum_{n+1}^{p} e_{j}-\sum_{1}^{s} d_{j}-\sum_{v+1}^{t^{\prime}} c_{j}^{\prime}-\sum_{m_{2}+1}^{q^{\prime}} b_{j}^{\prime}>0, \left\lvert\, \operatorname{rg} y<\frac{1}{2} T^{t} \pi\right.
$$

We shall give below some results left and use them later on. Askey ${ }^{8}$ give with $\lambda=1-s$

$$
\begin{equation*}
(\sin \theta)^{1-2 s} \quad P_{n}^{1-s}(\cos \theta)=\sum_{r=0}^{\infty} \frac{2^{2 s}(n+r)!\Gamma(n+2-2 s) \Gamma(r+s)}{\Gamma(1-s) \Gamma(s) r!n!\Gamma(n+r+2-s)} \sin (n+2 r+1) \theta \tag{3}
\end{equation*}
$$

where $s<1$ and $0<\theta<\pi$ and $P_{n}(\lambda)(\cos \theta)$ is given by

$$
\begin{equation*}
\left(1-2 r \cos \theta+r^{2}\right)^{-\lambda}=\sum_{n=0}^{\infty} P_{n}(\lambda)(\cos C) \cdot r^{n} \tag{4}
\end{equation*}
$$

also Rainville ${ }^{9}$

$$
\begin{equation*}
P_{n}(\lambda)(z)=\sum_{m=0}^{n} \frac{(2 \lambda)_{m+n}\left(\frac{z-1}{2}\right)^{m}}{m!(n-m)!\left(\lambda+\frac{1}{2}\right)_{m}} \tag{5}
\end{equation*}
$$

The Legendre duplication formula

$$
\begin{equation*}
\sqrt{(\pi)} \Gamma(2 z)=2^{2 z-1} \Gamma(z) \Gamma\left(z+\frac{1}{2}\right) \tag{6}
\end{equation*}
$$

Verma ${ }^{6}$ gives
and

Proof of equation (1) : On expressing the H-function of two variables as Mellin-Barnes type of double integral in L.H.S. of (1) and changing the order of summation and integration as perniissible by absolute convergence for stated conditions in (1), the series becomes

$$
\frac{1}{(2 \pi i)^{2}} \int_{-i \infty}^{i \infty} \int_{-i \infty}^{i \infty} \phi\left(\xi+\eta!\psi(\xi, \eta)\left[\sum_{r=0}^{\infty} \frac{(k+r)!\Gamma\left(1+\frac{k}{2}-h \xi\right) \Gamma\left(\frac{3}{2}+\frac{k}{2}-h \xi\right) \Gamma(r+h \xi)}{k!r!\Gamma(h \xi) \Gamma\left(1-h_{5}^{\zeta}\right) \Gamma\left(k+r+2-h_{s}^{\xi}\right)}\right.\right.
$$

$$
\cdot \sin (k+2 r+1) \theta] x \xi y^{\eta} d \xi d \eta
$$

Using the result (3) and (6), we have

$$
\frac{1}{(2 \pi i)^{2}} \int_{-i \infty}^{i \infty} \int_{-i \infty}^{i \infty} \phi(\xi+\eta) \psi(\xi, \eta)\left[\frac{\sqrt{(\pi)}}{2^{k+1}}(\sin \theta)^{\left(1-2^{h)}\right.} P_{k}^{(1-h \xi)}(\cos \theta)\right] x^{\xi} y^{\eta} d \xi d \eta
$$

Now substituting the value of $P_{k}^{(1-h \xi)}(\cos \theta)$ from (5) and then using the result (6), we get

$$
\sum_{u=0}^{k} \frac{\sqrt{(\pi)}}{2} \frac{\sin \theta(\cos \theta-1)^{u}}{u!(k-u)!}\left[\frac{1}{(2 \pi i)^{2}} \int_{-i \infty}^{i \infty} \int_{-i \infty}^{i \infty} \phi(\xi+\eta) \psi(\xi, \eta) \frac{\Gamma\left(1+\frac{k+u}{2}-h \xi\right) \Gamma\left(\frac{1}{2}+\frac{k+u}{2}-h \xi\right)}{\Gamma(1-h \xi) \Gamma\left(\frac{3}{2}+u-h \xi\right)} .\right.
$$

by definition of H-function of two variables (2), we get R.H.S. of (1), which completes the proof.
We shall derive here other Fourier series by applying the property of the H-function or by specialzing the parameters.
(i) The following Fourier series for H-function is arrived by using the result (7) :

$$
\begin{align*}
& \sum_{r=0}^{\infty} \frac{(k+r)!}{k!r!} H_{p, \nu_{1}+1, \nu_{2}, m_{1}+2, m_{2}}^{\left.n+3: t^{\prime}\right), s,\left(q+3: q^{\prime}\right)}\left\{\begin{array}{l}
\left.\left.-\begin{array}{l}
\left(a_{p}+e_{p} r, e_{p}\right) \\
(r-h r, h),\left(v_{t}-c_{t} r\right.
\end{array}\right), c_{q}\right),(-h r, h),(-k-r-h r-1, h) ; \\
\left(\gamma^{\prime} t^{\prime}, c_{t^{\prime}}^{\prime}\right) \\
\left(\delta_{s}-d_{\dot{d}} r, d_{s}\right) \\
\left(1+\frac{1}{2}+h r, h\right),\left(\frac{3}{2}+\frac{k}{2}+h r, h\right),\left(\beta q+o q r, b_{q^{\prime}},(1+h r, h) ;\right. \\
\left(\beta_{q^{\prime}}^{\prime}, b_{q^{\prime}}^{\prime}\right)
\end{array}\right] \\
& . x^{-r} \sin (k+2 r+1) \theta=\frac{\sqrt{(\pi)}}{2} \sum_{u=0}^{k} \frac{\sin \theta(\cos \theta-1)^{i}}{u!(k-u)!} H_{p,\left(t+2: t^{\prime}\right), s,\left(q+2: q^{\prime}\right)}^{n, \nu_{1}, \nu_{2}, m_{1}+2, m_{2}} \\
& {\left[\begin{array}{l|l}
\frac{x}{\sin ^{2 h} \theta} & \left.\begin{array}{l}
\left(d_{p}, e_{p}\right) \\
\left(\gamma_{t}, c_{t}\right) \\
\left(\delta_{s}, d_{s}\right)
\end{array}, h\right),\left(-\frac{1}{2}-u, h\right) ;\left(\gamma^{\prime} t^{\prime}, c^{\prime} t^{\prime}\right) \\
y & \left(1+\frac{k+u}{2}, h\right),\left(\frac{3}{2}+\frac{k+u}{2}, h\right),\left(\beta_{q}, b_{q}\right) ;\left(\beta_{q^{\prime}}^{\prime}, b_{q}^{\prime}\right)
\end{array}\right\}} \tag{9}
\end{align*}
$$

(ii) On putting $h=1=\left(e_{p}\right)=\left(c_{t}\right)=\left(c^{\prime} t^{\prime}\right)=\left(d_{s}\right)=\left(b_{q}\right)=\left(b_{q^{\prime}}^{\prime}\right)$ in (1), and using (8), we get the following result for Meijer G-function of two variables:

From (1), we can easily deduce the following integral :

$$
\cdot \frac{\sin \theta \cdot \sin (k+2 r+1) \theta_{\cdot}(\cos \theta-1)^{u}}{i u!(k-u)!} d \theta=\sum_{r=0}^{\infty} \frac{\sqrt{(\pi)}(k+r)!}{k!r!} H^{n, \nu_{1}+1, \nu_{2}, m_{1}+2, m_{2}} \begin{array}{r}
n,\left(t+3: i^{\prime}\right), s,\left(q+3: q^{\prime}\right)
\end{array}
$$

$$
\left\{\begin{array}{l|l}
x & \begin{array}{l}
\left(a_{p}, e_{p}\right) \\
(r, h),\left(\gamma_{t}, c_{t}\right),(0, h),(-k-r-1, h) ;\left(\gamma_{t^{\prime}}^{\prime}, c_{t^{\prime}}^{\prime}\right) \\
\left(\delta_{s}, d_{s}\right)
\end{array} \tag{111}\\
y & \left(1+\frac{k}{2}, h\right),\left(\frac{3}{2}+\frac{k}{2}, h\right),\left(\beta_{q}, b_{q}\right),(1, h) ;\left(\beta_{q^{\prime}}^{\prime}, b_{q^{\prime}}^{\prime}\right.
\end{array}\right\}
$$

where 0 ๙ θ 匹 $\pi, T \equiv \sum_{1}^{n} e_{j}+\sum_{1}^{\nu_{1}} c_{j}+\sum_{1}^{m_{1}} b_{j}-\sum_{n+1}^{p} e_{j}-\sum_{1}^{s} d_{j}-\sum_{\nu_{1}+1}^{t} c_{j}-\sum_{m_{1}+1}^{q} b_{j}>0,|\arg x|<\frac{1}{2} T \pi$,
and

$$
T^{\prime} \equiv \sum_{1}^{n} e_{j}+\sum_{1}^{\nu_{2}} c_{j}^{\prime}+\sum_{1}^{m_{2}} b_{j}^{\prime}-\sum_{j+1}^{p} e_{j}-\sum_{1}^{s} d_{j}-\sum_{\nu_{2}+1}^{t^{\prime}} c_{j}^{\prime}-\sum_{m_{2}+1}^{q^{\prime}} b_{j}^{\prime}>0,|\arg y|<\frac{1}{2} T^{\prime} \pi
$$

ACKNOWLEDGEMENT
I am highly grateful to Prof. P. M. Gupta for encouragement and guidance during the preparation of this paper.

REFERENOES

1. MaoRobert, T. M., Math. Z., 76 (1961), 79.
2. Kisabwani, R. ì., Compositio Math., 17 (1966), 149.
3. Parifar, C. L., Proc. Nat. Inst. Sei., India, 35 A (1969), 135.
4. Pabaskar, B. P., Proc. Camb. Phil. Soc., 63 (1967), 1083.
5. Kapoor, V. K. \& GUpta, S. K., (Indian J. Pure Appl. Math., 1 (1970), 433.
6. Verma, R. U., An. St. Univ. Iasi T., 17 (1971), 103.
7. Agarmal, R. P., Proc. Not. Inst. Sci., India, 31 A (1965), 536.
8. Askey, Reohakd, Proc. Amer. Math. Soc., 16 (1965), 1191.
9. RAtNvilur, E. D., "Special funotions", (Macmillan \& Co., New York), (1964), 24, 279.

$$
\begin{align*}
& \sum_{r=0}^{\infty} \frac{(k+r)!}{k!r!} G_{p,\left(t+3: t^{\prime}+t^{\prime}\right) ;,\left(q+3: q^{\prime}\right)}^{n, \nu_{1}+1, m_{1}+2, m_{2}}\left[\begin{array}{l}
\left(a_{q}\right) \\
x \\
r,\left(\gamma_{t}\right), 0,-k-r-1 ;\left(\gamma^{\prime} t^{\prime}\right) \\
\left(\delta_{s}\right) \\
1+\frac{k}{2}, \frac{3}{2}+\frac{k}{2},\left(\beta_{q}\right), 1 ;\left(\beta_{q^{\prime}}^{\prime}\right)
\end{array}\right] \sin (k+2 r+1) \theta \\
& =\frac{\sqrt{ }(\bar{\pi})}{2} \sum_{u=0}^{k} \frac{\sin \theta(\cos \theta-1)^{u}}{u!(k-u)!} G_{p,\left(t+2: t^{\prime}\right), s,\left(q+2: q^{\prime}\right)}^{n, \nu_{1}, \nu_{2}, m_{1}+2, m_{2}}\left[\begin{array}{c|c}
x & \begin{array}{l}
\left(a_{p}\right) \\
\sin ^{2} \theta
\end{array} \\
y & \left(\gamma_{t}\right), 0,-\frac{1}{2}-u ;\left(\gamma_{s}^{\prime} t^{\prime}\right) \\
1+\frac{k+u}{2}, \frac{3}{2}+\frac{k+u}{2},\left(\beta_{q}\right),\left(\beta_{q^{\prime}}\right)
\end{array}\right] . \tag{10}
\end{align*}
$$

