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This paper investigates the character of compressible magneto-relativistic flow in subsomo, Supersonic and transonic
regions by applying the method of small amplitude disturbance solutions. Relationsbetween the pressure coefficient, .
free stream Mach number and Alfven speed in these regions have also been obtmned

Harris! has 1nvest1gated magneto-relativistic equatlons for a perfect ﬂuld and has shown that for a
conducting fluid in the presence of magnetic field there exist three wave velocities. Taub?—3, has treated
the macrozcopic theory of relativistic fluid dynamics. In this paper we have investigated the character of
~compres31b’e magneto—relatlwstm flow in subsonic, supersonic and transonic regions by writing the govern-
ing equations in a form which is suitable for ﬁndmg small amplitude disturbance solutions in these three
regions. Relations between the pressure coefficient, free stream Mach number and Alfven speed in these
regions have also been obtained. It has been shown that in the absence of any magnetic and relativistic
effects, these relations reduce to Glauert law ¢, Ackeret :solu.i;lon6 and ordinary transonic expression obtam-
ed by Spreiter & A.lksne" respectively.

BASIC EQUATIONS AND THEIR ANALYSIS

The stress energy tensor T%J of a perfect magneto-relativistio fluid neglectmor heat conductlwty and
viscosity is glven by?®9

T'j=0u"ﬂi—p9‘j+f‘5 +en—1) 7 dl . (1)
where V o | .
A=t pl g H™ Hyy — p=2 H™ H g ‘ o ©®
is the electromagnetic stress energy tensor, ' : ‘ '
‘ a—fm'—p(1+e+10/p)

where p is the pressure, p the density, u the magnetic permeability, e the internal energy, ¢ the dielectric
constant and H'J is the electro-magnetic field tensor defined by Hij = ¢i#l [, H;where €' is the usual
‘permutation tensor. The maxwell’s equations are then, H,;x + Hjii + Hyij = 0. The Latin affixes take
values 1,2,3,4 whereas the Greek affizes 1, 2, 3. The covariant metric tensor g = 0 for ¢ # j and

Iu=9gn=0gn=—gu=—1 In rectangular cartesian coordinates 2! = x, 2% = y, 28 = z and 2% = ¢,
where ¢t is the time coordinate.
Also == def %%— is the four dimensional velqcity véctor of the fluid satisfying,
94w wi = wi v = ‘ _ (3)
and the metric of the space time is given by e - o
' L dst = gij dat dai - (4)

Sinee for values of € and u in vacuum, the entropy of the fluid partlcle is constant along a streamlme and
ep = 1, equation ¢1) reduces to, Co

Y = 01 11y 4 7 . ®)
In rectangular cartesian coord.mates @, 9, 2, the ordinary resultant velocity ¥ is given by ,
V2 =u? + o2 w2 (6)
It the be the ordinary 3-velocity components, the relations between 3-veloc1ty a,nd 4~veloclty are,

@‘1““/9,’“2—”,3, b_'wﬁ’u4_ﬁ (7)
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| where - | ‘ S B =11V}
The equations governing the motion of the fluid are, :
| (e wWi=0 V : 8
Ty =0 | | (9
wHi =0 (10),

where a comma preceding an index denotes partial derivative with respect to ;. Equation (8) is the relati- .
vistic form of the conservation of mass, equation (9) is the magneto-relativistic generalization of the conser-
vation of momentum and energy and (10) is the field equation. Substituting the value of 7%/ from (5) into
(9) we get, | | |
o wl iy = (9% — o' wi) pj + p (Hi H* wé i + Hi Hi 4 } g9 Hy HY),5 (11)

In the equation (11) the three space components are the generalizations of Euler’s equation for the
magneto-relativistic case and the fourth equation gives the time¢ component. Multiplying the fourth
equation by the 3-velocity u, and subtracting it from the other three we have,

' Dy, - ap ap 3 :
2 (g — 0 e . 9P __ o :
B2 (e — n Hy [%) i W, Ug ot + 7 K (Hy H%), B (12)
The equation (8)'in terms of 3-velocity can be written as, R
| Dp . ] 3B 3 T
85+ Gt 8 W) | =0 , (13)

' D 3 3
here — = -2
where D 5 + uq g

(13) are the magneto-relativistic flow equationé in terms of 3~x;elocity. For characterizing the fluid, the
- equation of state is taken as ’ '

‘ e=elps) | e
It has been shown by Tauh? that for gases in special relativity, the internal energy ¢ is given by
1+e/3p/2p+[ 1 +9p2[4~p2.], . ~ (15)

where for the equality sign in ( 15) the gas is said to be’ limiting and when p/p -1, the gasis said to be hot.
The gas is known as degenerate if it is both limiting and hot. Thus in this case, the internal energy of
the gas is given by . ‘

1+e=3pp | | (16) .
The internal energy defined by o }
S e=plp (v —1) S o (17)

with equation (16) give y = 4/3 for a degenerate gas, whereas equation (17) with y .»5/3 is not permitted -
for a relativistio gas. Since for small amplitude disturbance flow, ¥ is a slowly varying function of p/p
therefore in this paper we take y to be a constant for simplicity in the analysis. In the case of relativistic
isentropic motion, the expression for the velocity of sound g is given by, ‘ '

o ‘a? .—-‘dp/ndp o (18)
which on using the relation C dpldp=vople
g o esygen (19)

Substituting equation (18) into the expression for 7, for the ultra-relativistic case, the velocity of
sound a = 1/4/3_ The magneto-relativistic form of the energy equation is given by Taub® as

‘ 1 — 3 {95 — (9us Guil )} @ w = Constant _ - (209
Using relations (3), (6), (7), (17) and, (19), equation (20) can be written in terms of 3—velocii;y’ as
@ nfly — 1) + B2(u? + * + w?)[2 = 02, n [[y — 1) + B2, U?[2 2y
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where g qua,ntlty with suffix o0 denotes the value of that quantlty in the und_lsturbed ttate and U is the
corresponding free stream velocity. Usmg (18), equations (13) and (13) are combined to give (m two dlmen-
smnal steady flow),

LB e ) (E e e )
x| e !929[1030+*#{“(HOH”)’1+”(HoH");2}] @

g
where @ = 2 —a——w— +uv (-57!/— + -_— ) + o2 ‘Z; ) 0Py = qzlﬁf‘ and;,.oc, ] tatke; quues ;1‘__?.nd, 2 only.

Let ¥ denote a potential function such that

. ‘ Ug , 3% v
o that we haye ‘,
| =22 _yp v _
’” & 2 am e
¥ o
V== e == gy — = Tyy . PR

LR I I IR I

zm'd then equation (22) becomes

Vo (052 — ng) + ¥y (“rz “‘«J’Uyg) B 2%, ¥y Y’ﬂvy + ‘% Yoo aaf

() ol s v | [

X (av,z Y, 42 w,,«t.r@szrxyr.i.-wyz’wgy) + _.Z,%a (H, HO ), o ] - (@3

we introduce perturbation potential function ¢ defined bj’ ,
’ ¥ =U, +¢ B
such that, . o
Uy = Vg = (Ut)eg + ¢ua
v =Y, =U++¢,=U + o
e =Y, = ¢y =9
‘Let the perturbatlon b in the field I" be given by i

P=H,z+4h
so that ' o
2 ,ry . _ 2
H, = a_w"(r)=Hoo + by Hy = ﬁ(r)%hy
= BB (H, + B+ 5 |
. Taking the two d1mens1ona1 form of equation (21) and remembering that a,® = a?/8?, equation (23) can
be wmtten ag

[ (@) )]s ] (55t B oas

F(E R ) o S v s

i
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R R (e = ”'(U+¢x)¢y¢xy;-+-

2o 274 @3 Mg “
+:z,ﬂﬂ[(Uw)m+¢m]§mi [( +¢”)z£,+ﬂ :5] [’%ﬁi

{m + bt g ('(Uw)m ) 2] [ 32{<Hm+ e } {0+ 4 ty

d
42T+ ¢,,¢zy+¢2y¢yy}+3u{ © 44l 1) e+ ) -+ oy (1 ﬁh@)}] (24)

(24) is the equation governing the flow of compressible magneto relat1v1st10 gas and is suitable for ﬁ"ldl'lé
out small amplitude disturbances. in subsonic, supersonic and transonic regions. We treat below these
three cases separately.

. 3 V B ‘
SUBSONIC MAGNETO-RELATIVISTIC FLOW

We linearize equation (24) for the subsonic ma,gneto—relab;vmtlc flow assuming that the local values 0"
P p and € vary very slightly from their values Deys P> € 10 the undisturbed state, i.e. p = p,, + 9, p =
P - p' ebe., where the primed quantities denote small amplitude disturbances from their free stream
conditions. The power and cross products of the velocity terins and their gradients, terms related with
magnetic field and their gradients are neglected.and .¢,/U, ¢,/U, h/H , , b, JH << 1. Neglectmg bigher
order ferms of small quantities and their derlva,twes, we observe that V2 > U%, n > 4,, and equation (24)
then takes the form ‘

[

[1_(:U) ]¢,,+¢9,.~o S | @)

Oy

where 0%y = %[ B2,,. Since for subsonic magneto-relativistic flow U/ty, < 1, equation (25) shows -
that the flow is of elhptm type. Introducmg the affine transformations, ' - :

=8¢ y=10 82._1—«([})2 | " (26)

(17998

In equa.tlon (25) for charactcrlzmg the flow of the fluid, we get : :
. b tog=0 . ) @n

which is the Laplace equation in two dimensions. Now analysing equation (12), we determine the expres-
sion for pressure coefficient in the case of small amplitude disturbances. For two dimensional steady
flow, the linearized & component of equation (12) (neglecting terms of order higher than two) is given by -

g—gi.=—pwnw o UL o B, U S 4 3uH e ()
which on integration gives
P—Pu =—Pw Mo P Ubst p B H2y Uds + 3 pH, by . - (29)
Again using tbe affine transformation given by (26), equatlon (29): becomes
P—Po = P oo Boo Ut [8 1 By H2y Udg |8 +3uHy Rt [5 (30)
Let the pressure coefficient Py, in the case of compress1ble magneto—i’elativistic flow, be defined by
‘ 2 ‘ : .
b= w7l (p pw) o Y
which dn substituting the value of p — p,, from (30) and neglecting higher order terms becomes
Ping B ( b ) D :
P= M0 Fw (1 T ) (32
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. where Py = — 2¢¢/U is the local incomptessible pressure coefficient corresponding to the flow described by
(27) and b, is the Alfven speed &‘or the undisturbed gas. Substltutmg the values of & and B2 -in equation
(32) pnd snnphfymg we have - -

. ~ b2 e

- e ‘ | | ;

N Pi = [(1 ) (1 e U2/a2 )]} | (33)

]

% -

For the general compressible flow, it will be convenient to consuder o, = 1 (the velocity of light ¢ has
been taken to be unlty) and then (33) becomes . :

e G [l B RO e e R

where M, is the free stream Mach number. In the case when the ﬂow is free from relativistic and
magnetic effects i.e. when 7, — 1 M, /n—>0andb, > 0, the equation (34) reduces to the well known
Prandtl Glauert law®. :

SUPERSONIC MAGNETO- RELATIVISTIC FLOW

For small amphtude disturbances in the case of supersonic magneto-relatwlstlc flow we start Wlth
equation (34) which on neglecting higher order terms of small q_uantltles and their derivatives, as in the
last section, transforms to equatich (25). But, sirce for supersonic magtieto-relativistic flow U/a,,, > 1
the equation (25) is of hyperbolic type. Usmg equation (29) and (31), pressure coefficient is given by

Poom =t = pa e B Vbt B, U 4] @)

The pressure coefficient — 24,/U, in this case is related to the local flow deflection ¢ as — 24,/U =‘20/a‘u
- - L : 2’ . i
analogous to the procedure adopted by Lippmann & Roshko®, 'Where ol = ( v ) ~— 1. Equation (35) can

(7%

then be written as

Frimts (1“"’2“”’*)[{1“(‘“ )} {e +(‘*) - }]ﬁé )

~ In the case of non-relativistic flow having no magnetic effests, equation (36) reduces to the well known
Ackeret solution®,

TRANSONIC' MAGNETO- RELATIVISTIC FLOW

Tor the transonic magneto-relativistic case the decrease in the third term relat1ve to the first term on the
left hand side of (24) must be taken into account. It is assumed that the streamwise gradients of $, u’ and
h are comparatively greater than the lateral gradients of potential or velocity components or field strength
components. Thus in this case the first three terms ate retained in (24) with 9 -y, and g2, = 1/(1—U2),
Equation (24) then reduces to :

[1-G2)] m—["‘}}nj“w] [ZT b b= 0 | o)

(2799

In view of the subsonic and superson‘c flows, the condition taken for transonic ﬂow is Ulay, = 1. Thus
follomng the method of Spreiter”, equation (37) may be written as

[(7—1)+277w]¢1¢zz . . .
Py T, k $r oy N <38)

" Considering the boundary conditions it is easy to see that the flow is tangential to the locally perturbed
streamline and ¢, and ¢y vanish at infinity. The former condition, asin linearised theory, is approximated to

: iy
=U
( by )Slfeamh'ne o ( dw )
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: '.l.'alnng into account the case of local supersonic flow, in which ¢, = 4'> 0 and droppmg the primes of the
perturbed quantities) equation (38) redices to

T X dmAdw=0 . a0 (39)

where A = k, 4. Assuming the variation of A to.be very-small for the initial stages of an a,lysus it may be written
as constant The solution for u on the locally perturbed streaniline is

dy -

B u=—Urt—- (40)
w iich on differentiation gives . ' T \
du - ‘d2 y : o
U -3 ,
3 dx —UA da? S (41)‘
Substituting the value of A into (41) and using (29) and (31) we get . ‘ ‘
[ (v —1) | o= st |
Po= |20 Fw. (g2 [y —1 C— i (42
[ v ki . 2[ly —1) + 29, o)

where C is the constant of integration and 8(=dy/dx) is the local flow deflection. For applying this result to
the locally magneto-relativistic supersonic flow, the constant C is evaluated from (40) from which it is clear
that 4 and thus P, is zero at 8§ = 0. Thus,

. . . % ‘ . :
P,= .2, (B2 —ng) [18 ng,/ {(y_-fl) + 2 'qw}.] ot <0 C(48)
Considering the transonic flow condition Ulayy, =1 and na, = 1 we have
1 ’ |

o L Pesldsy - (44

ﬁsing the approximation 29, >>> (y — 1) and (44), equation“(43)' reduces to the expression
P, ‘ o1 3
£~ ) () o) o

-For the non magneto-relativistic ﬁow; where n; > 1, —12 -0 and b, -> 0, equation (45) reduces to the
ordinary transonic expression originally obtained by Spreiter & Alksne’.
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