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This paper investigates the character of oompressible magneto-relativistic flow in subsonic, supersonic and transonio 
regions by applying the method of small empIiCude disturbance solutions. Relations between the pressure coefflcient, 
free stream Mach number and Alfven speed in these regions have also been obtained. 

Harris1 has investigated magneto-relativistic equations for a perfect %@id and has shown that for a 
conducting fluid in the presence of magnetic field there exist t hee  wave velocities. Taub2-5, has treated 
the macjrosoopic theory of relativistic fluid dynamics. In this paper we have investigated the character of 
compressible magneto-relativistic flow in subsbnic, supersonic and transonic regions by writing the govern- 
ing equations in a form which is suitable for finding small amplitude disturbance solutions in these three 
regions. Relations between the pressure coefficient, free stream Mach number and Alfven speed in these 
regions have also been obtained. It has been shown that in the absence of any magrletic and relativistic 
effects, these relations reduce to Glauert law 6, Ackeret solution6 and ordinary transonic expression obtain- 

- ed by Spreiter & Alksne7 respectively. 

B A S I C  E ? Q U A T I O N S  A N q  T H E I R  A N A L Y S I S  

The stress energy tensor T;j of a perfect magneto-relatiqistic fluid neglecting heat conductivity and 
viscosity is given by49 

where 
Tij = * p-l$j H m % H , , -  ,.'-I Hmi H d (2) 

is the eleotromagnetio stress energy tepsor, , 

where p is the pressure, p the density, p the magnetic permeability, e theinternalenergy, e the dielectric 
constant and H" is the electro-magnetic field tensor deiined by H;j = Uk Ht where is the usual 
permutation tensor. The mpxwell'a equations are then, H $ j , ~  + Hjk,i + Hki,j = 0. The Latin affixes take 
values 1,2,3,4 whereas the Greek affixes 1, 2, 3. The covslriant metric tensor gg = 0 for i # j and 
g,, =g22.= g,, 7 --g, = - 1. In rectangular Cartesian coordinates xl = x, x2 = y, Z = z and &-= t, 
whe~e t IS the time coordmate. 

. def dxi 
Also u k  - is the four dimensional velocity vector of the fluid satisfging, 

a s  

and the metric of the space time is given by 

Since for values of e and p in vacuum, the entropy sf the fluid particle is constant along a streamline and 
ep = 1, equation (1)  reduce^ to, , .  

Tij = u vi - @j + 7if PI 
In rectangular cgrtegian coordinates x, g, z, the orcEinr5ry resultant velocity V is given by 

If ua be the ordinary 3-velocity components, the relations between 3-velocity and kvelooity are, 
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where ,8 = l/(l&V2)* 

The equations governing the motion of the fluid are, 
(p ui),i = O (8) 

(Tij)yj = 0 (9) 
Hij = 0 (10). 

where a comma preceding an index denotes paxtial derivative with respect to xi. Equation (8) is the relati- 
vistic form of the consetvation of mass, equation (9) is the magneto-relativistic generalization of the conser- 
vation of momentum and energy and (10) is the field equation. Substituting the value of Tdj from (6 )  into 
(9) we get, 

u d Uiyj = (9% - d Zdj) p,j + p (HE Hk UC u j  + Hi Hj  + 4 gij Hk H'),j (11) 
In the equation (11) the three space components are the generalizations of Euler's equation for the 
magneto-relativistic case and the fourth equation gives the time component. Multiplying the fourth 
equation by the 3-velocity zc, and subtracting it from the other three we have, 

The equation (8) in terms of 3-velocity can be written as, 

D a a denotes the differentiation following the fluid. Equa,tions (12) and where - f - + u, 
~t at c u 

(13) are the magneto-relativistic flow equations in terms of 3-velocity. For characterizing the fluid, the 
equation of state is taken as 

e  = e (P, P) . (14) 
It has been shown by Taub3 that for gases in special relativity, the internal energy e is given by 

where for the equality sign in (15) the gas is said to be limiting and whenp/+P / 1, the gas is said to be hot. 
The gas is known as degenerate if it is both limiting and hot. Thus in this case, the internal energy of 
the gas is given by 

1 + e =  3pIp 
The internal energy defined by 

(16) , 

e = PIP (Y - 1) (18) 

with equation (16) give y = 413 for a degenerate gats, whereas equation (17) with y /' 613 is not permitted 
for a relativistio gas. Bnce for small amplitude disturbance flow, y is a slowly varying function of p/+P 
therefore in this paper we take y to  be a constant for simplicity in the analysis. In the case of relativistic , 
isentropic motion, the expression for the velocity of sound a is given by, 

1 

which on using the relation 
I - * - - 

gives * a2 = Y PIP 7 (19) 
Substituting equation (16) into the expression for q,  for the ultra-relativistic case, the velocity of 
sound a = 1/43, The magneto-relativistic form of the energy equation is given by Taub6 as 

9 - & (g i j  - (gd gc4i/gYY)~ U; J = Comtant (20) 
Using relations (3), (6), (7), (17) and (IS), equation (20) can be written in terms of 3-velocity as 

a2 - I) + 8' (u' + va + w2)/2 = a2, i r  - 1) t PzW 0'12 PI) 
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where a quantity with suffix CQ denotes the value of that quantity in the undishrbed xtiate and U is the 
corresponding free stream velocity. Using (la), equations (12) and (13) are combine8 to give (m two dimen- 
sional steady flow), % 

3u $8 where 8 = u2 - + w v ( % + $ ) + v? L- , anr = c&/~' and a,  B take values 1. y d  2 only. ax: 34 

Let Y denote a potential function such that 

...................... 
* 

.................. 
and then equation (22) hecomes 

we introduce perturbation potential function + defined by 

?fJ =urn++ 
such that, 

%., 

ua = YXa = CUx)sa ,+ +za 

u = Y x  = U + + s = U + u '  
v = Y y  =+  - v f  Y - I 

Let the perturbation h in the field I' be given by 

r = H , s + h  
so that 

a " a H, = - (r) = H ,  + hz, H,  = - (r) = h, 
ax BY 

H2 = Hi H' = (H,  + h,)2 + hy2 

Taking the two dimensional form of equation (21) and remembering that a?; = a21b2, equation (23) can 
be written-as 
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4-2 (U 4- .)h dxy + A dvg] +3!{( u + $3) (a, + Ir,) {b* + hzv) 4- h h8 (hyg + (24) 

(24) is the equation governing the flow of compressible magneto-relativistic gas and is suitable for finding 
out small amplitude disturbances in subsonic, supersonic and transonic regions. We treat bebw these 
three casea separately. 

We linea~ize equation (24) for the subso~ic magneto-relatipistic flow assuming that the local values o - 
p, p and e vary very slightly from tbeir values pa ,  p, , e, in the undisturbed state, i.e. p = p, + p', p = 
p, + p' etc., where the primed quantities denote small amplitude disturbances from their free stream 
conditions. The power and cross products of the velocity terins and their gradients, terms related with 
magnetic field and their gradients are nigle~ted.and.q5~]U, d,/U, h,/H,, hy/Hm << 1. Neglecting bigher 
order ferSas of small quantities and tbeir derivatives, we observe that V2 + 02, 7 3 qm and equation (24) 
then takes the form 

where at,, = a%, /P'J.+. Since for subsonic magneto-relativistic flow U/ar, < 1, equation (25) shows 
that the flow is of elliptic type. Introducing the a&e transfdrmakiops, - 

In equation (25) for characterizing the flow of the Buid, we get 

+,g+drt ;=O 1 (27) 

which is the Laplace equation in two dimensions. Now analysing eqvation (12), we determine the ehpres- 
sion for pressure coefficient in the case of h a l l  amplitude dis+urbanoee. Por two dimensional steady 
flow, the linearized x component of equation (12) (neglecting terms of order higher than two) is given by 

which on integration gives 

P - ~ m  =-  pm vm B2m U 4 s  + P P2m H2, $1: + 3 P H m  ha , (29) 

Again using tbe a&e transformation given by (26), equation (29) bsoomes 

P-Pm =-  P, 9m P2m U dt 16 $ P P2m H2w 0 dl /a + 3 P Hm ht 18 ' (30) 

Let the pressure coefficient P,, in the case of compressible magneto-relativistic flow, be defined by 

which on substituting the value of p - p, from (30) and neglecting higher order terms becomes 
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where Pi = - 2&/ U is the local lhcomptessible pressure coefficient correspondiug to the flow des~ribed by 
(27) and b, is the AJfven speed tor the undisturbed gas. Substituting the values .of 6 and pa, "in equation 
(3!) p d  simplifying we have e 

Por the general compressible flow, it will be canvenient to consider )hapl) = 1 (the velocity of light c hm 
been taken to be unity) and then (33) becomes 

where M, is the free stream Mach number. In the case when the flow is free from relativistic and 
magnetic effects i.e. when 7, + 1, M,/n + O and b, + 0, the equation (34) reduces to the well known 
Prandtl Glauert law$. 

S U P E R S O N I C  M A G N E T O - R E L A T I V I S T I C  F L O W  

For small amplitude disturbances in the c@se of supersonic magneto-relativistic flow we start' with 
equation (24) wliich on neglecting higher order terms of mall  quantities and their derivatives, as in the 
last section, transforms to equatidir (28). But,. sidce far ,sup3r~o&ic maglleti-relativistic flow u/a,, > 1 
the equation (25) is of hyperbolic type. using equation (29) and (311, pressure coe6cient is given by 

The pressure coefficient - 2+a/U, in this case is related to the local flow deflection B as - 2+,/U = 2 8 1 ~ ~  

analogous to the procedure adopted by Liepmann & Roshkoe, where K Z  = (x)2 - 1. Equation (35) can 
a,, 

then be wr~tten as 

In the case of non-relativistic flow having no magnetic e%?t.j, equ%tion (36) reduces to the well known 
Ackeret solution6. 

For the transonic magneto-relativistic case the decrease in the third term relative to the first terq  on the 
left hand side of (24) must be taken into account. It: is assumed that the streamwise gradients of $, u' and 
h are comparatively greater than the lateral gradients of potential or velocity components or field strength 
components. Thus in this case the first three terms are retaincd in (24) with r ]  -+ r ] ,  and @a, = l/(l--U2)B. 
Equation (24) then reduces to 

I n  view of the subsonic and supers on:^ flows, the condition taken for transonic flow is U/&, = 1. Tbue 
following the methad of Spreiter7, equation (37) may be written as 

Considering the boundary conditions it is easy to see that the flow is tangential to the locally perturbed 
streamline and 4, and +g vanish a t  infinity. The former condition, as in linearired theory, is approximated to 
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Taking into account the cage of local supersonic flow, in which 4, = u'> 0 and dropping the primes of the 
perturbed quantities; equation (38) reduces to 

where A =-k,u. Assuming the! variation of h to be very small for the initial stag- of analysis, it may be written 
as constant. The solution for u on the locally perturbed streaniline is 

w ilich on diflerentiation gives i 

d u  - = - ' d2y 
U A-4 - 

d z  ax2 . 

Substituting the value of h into (41) and using (29) and (31) we get 

where C is the constant of integration and O(=dy/dx) is the local flow aeflectjon. For applying this result to 
the locally magneto-relativistic supersonic flow, the constant C is evaluated from (40) from which it is clear 
that u and thus P, is zero a t  O = 0. Thus, 

Considering - the transonic flow condition' U/a,@ = 1 and ma, = 1 we have 
/ 

1 
Baa = 1 +y (44) 

&ing the approximation 2.1, >> ( y  - 1 )  and (44),  equation (43) reduces to the expression 

1 
Fok the non magneto-relativistic flow, where 7, -+ 1, - + 0 and b,  + 0, equation (45) reduces to the 

n2 

ordinmy transonic expression originally obtained by Spreiter, & Alksne7. 
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