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Ane integral transform is developed whose kernel is a spherical function, a solution of Ggendre differential 
equaEon. This transform is used to determine the temperature a t  any point in a hollow finite cone whose inner 
an leis a and outer angle is /3, with boundary conditions of radiation type on the outside and inside .%mfaces having 
ingpendent radiation constants. I t  is eoidenii that most of th-: possible problems on boundary conditions in ho1lo.w 
wnesoan be solved by particularising the method described here. 

The purpose is to solve a problem of finding temperature inside a hollow finite cone bounded by 
surfaces 9 = GC and 9 = /I when there is heat radiation on its outside and inside surfaces. For this 
purpose, we introduce first a new integral transform' on lines with that of Marchi and Zgrablich. 

Consider the Legendre differential* equation of order v. 
\ 

The kernel of the integral transform is the general solution of (13 with boundary ionditions given 
in (3). We shall further use this transform to solve the physical problem stated above. It is presumed 
that all functions involved satisfy Dirichlet's oonditions. 

T H E  T R A N S B O R M  A N D  I N V E R S I O N  
r , 

Let us seek the solution of our Legendre differential equation 

for the boundary conditions' 

~ ( a )  + k,y'(a) = 0 ; y(b)  + Ic,y'(b) = 0 (3) 
where Ic,, and k2 are independent radiation constants. 

The general solution of (2)  is 

Y = Cl Pv (2) + C*&v (4 (4) 
where Pv(x) and Qv(x) are Legendre functions of the first and second kind, respectively. Substituting 
(4) in (31, we get 

0 1  PV (a) + 0 2 Q v  (a) +k, [ C1 P', !a) + C2&'v (a)  1 = 0 
(6) 

ci Pv (b) + CzQv (b) + JG2 [ C1 P'v (b) + C2Q'v ( b ) ]  = 0 

Let 
Pv (ki ,  $1 = Pv ($1 + +i P'v ( x )  

Qv (ki, 5)  = Qv ($1 + k Q'v ($1 
Then (5) can be rewritten as 



' 7 2  = - - Pv lk,, a! - - pv (1% b) 
C, Qv (lo,, a )  , QV (%, h )  , + 

Therefore 

Pv (k,, a) Qv (ka, b) - Pv (k2, b)  Qv (7c1, a)  .= 0 (8) 

Let vn be the root of (S), then the general solution takes the form , 

Y I , ~  ( x )  = [ pVn ( x )  . Q~~ (k,, a )  - Q ~ *  ( d )  (kly a) 
Qv, (4, a)  1 (9) 

\ yg,* (5) =. O1 [ Pun 0 Qvn (k2, b) A Qvn (2) Pvn (4, ' 1  ] 
Qvn (k29 b) 

(10) 

By a linear combination of (9) and ( lo) ,  we get the general solution 

yn (2) = Evn (kl, k2, X )  = Pv, ( x )  [ Qvn (k1, a)  + Qvp (kg, b) I - 
-Qv, (4 [ Pve (4, a) -I- Pv, $2, b) I (11) 

which are solutions of Legendre differential. equation (2), of order v ,  and satisfy the boundary con- 
ditions (3). Such functions are Eigen functionshnd are orthogonal in the interval (a , b). NOW 
let us define the finite integral transform 

/ ( I )  = jb f ( X I .  Eva (k,, k2, 4 d l  ( 12) 

a 

where j ( n )  is'the transform off ( X I  with respect to the kerael Eve (k,, kg, x )  

. Inversion Theorem t 

Iff ( x )  satisfies Dirichlet's conditions in the interval a < r : b and f (n) exists, then 

f ( x )  = 2 a* Eu. (k,, 4, 4 (13j 

R 

where 

$(I)  [ an = - and Cn = [ Eva (kl, k2, 3) l2 dx 
Cn 

(14) 

proof 
Let us take that f ( x )  is expressable in the form , 

I 

f ($1 = 2 ai EVi (4, k, .) 
( 

- - i 

Taking the transform of both the sides we get 

? b 

f ( n )  = 2 ai j E,; (k,, 4 , x )  E~~ (kl, k2, x) ax 
i a / 

From the property of orthogonality 

i" Evi (k,, kg, 5). Evn (k,, 7 ~ ,  x )  dx = 0, for k # f i  

a 
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H ~ W '  
\ 

b -  - 1 

I, _ 
B .  
i * f ( f l )  = 0. [ E v i  (4, k2, xi l2 d x ,  

Q 

therefore am = f (n)  C,, where Cfi is given by (14). 

C A L C U L A T I O N  O F  Os 

I f  wv ( 2 )  and wo (2)  denote any solutions of the Legendre's differential equation8 with parameters v and 
o respectively, th&n horn second relahion3 (p 169, 3' 12, (1 )  ] b 

/ ' d  
1 

W v  . wo d2 = 
( v - 0 )  ( p  + 0 -4- 1) . [ Z ( V - 0 ,  -v.wo+.-"wo-l-~. uv- , .  w. ] (161 

0 

then 

/ ;. w,dz= - o u v .  W-1 -VW-I. W ,  

20 + 1  
z w2, + I'm [ v+o v-a  i 

0 0 

Changing v  to a  + h and taking the limit h a 0 

s" [ 
I 

wa, d o  = 
2a + k z w ~ ~ - o ~ - ~  wu + U L ]  (16) 

0 

where ' . 
\ 

% + h .  W o - - l - W o + h - l .  wa & = l h  
h+O h - (17) 

AB stated w, is the solution of 
. d20, d u o  

( 1  - z2) - 22 - + a ( ~ + l ) W o = O  (18) dz 

d u ,  Let w', = - do  . Differentiate (18) with respect to a  we get 

d2wto du'o 
( 1  - 22) - - 22 

d22 --&7 + ' ( 0  + 1 )  0'0 + ( 2 o  + 1 ) w o  = O  (19) 

Further u, + h will be the solution of the differential equation 

a 2 ~ ,  dwo + h -- " )  ' dz2 - 2 2 .  --- 
d2 + ( o + & ) ( a + h +  l ) ~ ~ + h = O  C201 

Now for small h assuming the approximation . 
~ o + &  = + hw'o (21) 

&d substituting $his in (20), we get 

a 2 ~ ,  dm, dwlo 7 
0 - a 2 )  { x + h x } - 2 2 { T  + A T ]  + 

+ ( a $ ; h ) ( t J + h +  l ) ~ @ + h ( u + h ) ( o + h + 1 ) w ' u = O  

Now sub8titutint: ~sllues froq (18) and (19) we calculate the first order approximtion of wto 

wu 
w'o R? - - 

a q - h j - I  
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Hencte substituting value of w ,  + h and w ,  + h- 1 in (17),  we get 

L- lim wC7-1.w' 2 0 + 1  - . 2 0 - 1  

i - t o  [ 2 u + h + l  2 u 4 - I L - 1  
\ 

2 w , - 1 .  w ,  = 
402- 1 

Substituting this in (16), we get 

i - 
. wow, -1  

(a,)2 d z  = --- zw2& - (40" 220 - 1) 
402- 1  

6 f 
Further changing z to x and taking limits &m a to b, w ,  being replaced by Ev ,  (kl , ,  ks, 3)). we 

get 

P R O P E R T I E S  O F  T H E  T R A N S F O R M  

d2f ' f  Taking , We investigate the effect of this transform on the expression (1 - x 2 )  d~ - 2% - dx * 

the transform of this expression and integrating by parts we obtain 

d Ev, 

a a 

It can be easily deduced from (11) and (6), taking into account (a), that 
2 * 

1 1  = - - and - 
5 

. Now substituting these values in (24),  we get 
- b 

d2f 
~ [ ( 1 - x 2 ) ~ - 2 x 2 } ~ v ~ u . ( k l , k 2 , x ~ d x  dx . 
a 

1 - b2 -- - 
k2 

-v. (v. 4- 1)f C) (26) 

This is the basic property of oar t r ~ n s f ~ ~  t b ~ t  wiU enable us to solve problems in which such term 
me involved. 
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T R A N S F O R M  O F  S O M E  F U N C T I O N S  

, We shall obtain here the integral transforms, defined in (12) of some functions f (x), defined in the 
range - 1 < x < 1. We choose a and b, the limits of the integration of the integral transform, 
such that - 1 < a < b < 1. I 

Let f (x) = Pm fz), then 
b 

a 

Making use of first relation3 I 

- 
f (n)  - - 1 dpm ('1 ) Ib  (28) 

(m-- vn) ( m  + vn 4- 1) - E n  7 a 

Further replacing by using the recurrence relation3 [p. 161,3.8 (19)], (28) can be rewritten as 

Now applying the property given by (25), we get 
- 
f (n)  = -- Evn(Fc,, k2, b) 

(m-vn) ( m  + vn +11 

Further any funation f (z) defined in the ranges - 1 < x < 1, if satisfies Dirichlet's conditions, then 
it; can be expanded in a series of Legendre polpomials. 

where 

Sinoe the range of integration (a, b, )  of the transform, is a subinterval of ( - 1 , l )  hence the expansion 
(30) is vdid in the said range. Assuming the validity of the term by term integration the transform of 
f (x), defined By (12) will be 

wbere B, is given by reltation (31) which can be ewilg determined, I 
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A P P L I C A T I O N  TO S T E A D Y  S T A T E  P R O B L E M  O F  A H O L L O W  F I N I T E  C O N E  
W I T H  R A D I A T I O N  

Consider the steady state solution of a. hollow finite cone, whose axis is coincident with 
z-axis, defined by a < 0 < 6, 0 < r G a, where x and 6 are interior and exterior 
angles of the cone, and p, 0, 0) are spherical coordinates, witlh boundary conditions of radiation 
typo. Assuming symmetry with respect to z-axis, the temperature u (r, 0 )  at any point of the cone 
will be the solution of the equation : 

1f we take p =. cos 8 and pl = cos jg and p2 = cos a, then u (r, p) is the solution of 

Let the boundary conditions be 

where kl and k2 are radiation constants, and 
u (a, p) = f !p) = Pm (p) (3'6) 

Now applying the transform (12) with respect to p to (34) and (36) and denoting ii = zi (r, a) 
as the transform of u (r, p) andfL@) as the transform off (p), we get . 

where 

. 1 - ~2~ Evd \kl, k2, p2) ra - I-P? Evn (kl, k2, p1) rP (38) 4 ( 1  = , k2 
kl - 

I Q (a, n) =fin) (39) 

where 7 (n) is given by (29) 

Equation (37) is second order equation af homogeneous type, calculati~lg Ihe  complement^ fun- 
ction and the particular integral, the solution can be written as 

P 
1 - p12 rl + -  Evn (kl, kz,plI 

(P- vn) (P + vn + 1) 
(40) 

kl 
Since at r = 0, 2 has to be finite, therefore B = 0 and by applying bo~lndary condition (39), we get 

1 - P12 af' - - Ev* ('1, h PI) (p  - Vn) ( p  + vn + 1) 
kl I 

Hence 

yo 
, n = r V  - l-Bla Evn ('1, k2, R' (U - v*) (u + vn + 1) + 

k2 
r p 

(42) 

where A is given by (41) 
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Now applying inversion formula (13) to (42) we get the solution 

u ( T i  P) = 24 Eum (4, k2, p) ii (r, a) t (43) 
' 12 

ere C, is given by (14) and ii jr, n) by (42) 

A P P L I C A T I O N  T O  T H E  T R A N S I E N T  H E A T  E Q U A T I O N  I N  A H O L L O ~ F I N I T E  
C O N E  W I T R  R A D I A T I O N  

We consider the transient heat flow in a hollow finite cone, with boundary conditions of radiation 

PC type. Let the conductivity of the material be i?,, a constant and - - 1 - - 
4 3  m2 ' 

where p is the 

density and c-is the specific heat of the material of the cone. The temperature u (r, p, t ) ,  where 
p = cos 0, is the solution of the heat equation : 

The boundary conditions are 

u (r, PI ,  t i ,  + 6 up (T,  pl, t) = Rl (r, t )  
fort>O, O , < r < a  . ( l i R )  

U (r, Pe, t )  4- k2up (r, pa, t )  = R2 (r, t )  . 
au where up = - 
PP 

Assuming that the solution is of the tyee 
u = A e-X8t T (r, p 3 -  (46) 

and B, (r, t) = Ae - ha* fl ( r )  m d  R2 (r, t )  = Ae - Xat f2 ( r )  

The equations (44) and (45) reduces to 
A4 --  a2P 2 ax 1 .?r 
*2 T ( ~ 9  p) = - y2 +T. 3P 

(47) 

and 

A2 
Now taking --; = k2, the equation (47)  can be rewritten as m2 

Naylor4 has developed a Lebedev transform for the group of terms r2 Yp, + 2r Y ,  - k29.2 y 
and has suggested that a transform can be devised for group of terms r2 Y,, + 2r Y ,  + f i r 2  y. 
Such a transform can be easily developed as 

a 

where 

n (V, r )  = J,  (h) Y ,  (ka) - J" (h) Yo (b) 
rznd its inversion formula will be 

(51) - 
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where L is the path Re (v)  = c, 0 < e < r ,  the strip in which ? (v,  p) is re&. 

Applying the transform (50) to (49) and (48), we get 

2a* 
( ~ 2 - & ) r ( ~ , ~ ,  + - -T (~ , ; )  n + a[ ( 1 - ~ 2 )  @] =: a~ 3~ 

and 

I (v, pi) 3- kl Z' (v, p1) = P1 (v)  I 
(541 

r (v, p2) + XCP 9 (v,  p2) = F2 (4 
Now applying the transform defined by (12k we get 

2al 
(v" 4) ; (v, n) -I- - n 7 (a, n )  - v. (v. + 1) ; (v,  n )  + 

where i (v,  n) and r (v, nI is the transform (12) of F ( v ,  p)  and T (v, p). -. 
Writing W(v1 = - p22 Eva (kl,  k2, p2) F2 (4 - 7 Eva(%, 4.n) $ ( v )  1 . 

1 k2 

we get 

Hence taking the inversion step by step 
7 1 - 
T ,(v, pl = 2 T (v ,  n) Eva ((k, k2, p)  (57) 

n 

Where C, is given by (14) 

Further by applying (52) 

Further the arbitrary constant A in (46) can be easily determined by prescribed initial conditions. 
i 
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