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An expression for the t6Mpemture _distribution in a oircular pipe5s obtained h e n  visoons incompressible fluid is flowing 
through it. Effeot of viecous dissipation is not neglectad and the rato of heat generation per unit volunle varies periodi- 
oally with time. 

The attention of many research worker. in fluid dynamics has been diverted towards the qtudy of heat 
transfer in viscous incompressible  fluid^ in the recent years. The interest in this subject has been dew- 
loped by a paper of Rhatnagar & Tikekarl in which they have discussed the temperature distribution of 
a viscous incompressible fluid flowing in a channel bounded by two co-axial circular cylinders with the ratr: 
of heat generation per unit voldme as an expanential function of timc. They have obtained the expression 
by neglecting the effect of viscous dissipation. 

The temperature distribution of a viscous incompre~eible fluid flowing in a circalar pipe with the rate 
of heat generation per $nit volume varying periodically, with time is dic;cuss?d .in the present invgstigation. 
Effect of viscous dissipation is not neglected. The exprts~ion for the temperature thus obtained has been 
compared with that of La12 where he has obtained the expression by neglecting the dissipation term. The 
expre~eion for the temperature is then obtained in dimensionless form. This consists of two park, the one 
varies periodically with time and the other is the transient; part which vanishes in the limit as t tends to 
infinity. It is also eeen that the contribution of the transient part is insignificant when t > 2. 

Herk the expression for the temperature distribution is obbained with the conditions that the surface 
r'=rr0 (i) has zero initial temperature, and (ii) is always being kept at zero temperature. 

In the present note the velocity distribution is steady while +he temperature distribution is unsteady. 
The temperature distribution does not affect the flow field of an incompressible flu'd with constant pro- 
perties. We have taken a fluid having these properties. 

F O R M U L A T I O N  A N D  S O L U T I O N  O F  T H E  P R O B L E M  

We a - s u e  that the temperature T' of the liquid isindependent of its axial position x', then the energy 
equations in the preeent case reduces to 

2 3Q' 
where ($) is the energy dissipation function, is the ~oeflieient of vis~mity of the fluid, + is the t 

rate of heat genemtion per unit volume in the fluid, c' and k' are respectively the specific heat and the 
coefficient of heat Conductivity of the fluid. Here dashes denote dimensional quantities. 

We make equation (1) dimensionless by introducing 

r' U' v't' T' v'Q' y = ,  u =  -, ,  t = -  ,2' 21 = - f(t) = - 
ro urn 8' ' k'8' ' 

(2) 
ro 
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where u,' is the maximum velocity in the pipe, V' ( = -$- ) is the kinematic vismsity, y ( = -$) 
is the non-dimensional radial coordinate, u ( = 5; ) is the . non-dimensional axial velocity, 0' is a - 

. characteristic temperature, f ( t )  is a fwction of time only such that 
', ($1 t - 0  =o.  

Equation (1) then becomes 

t 4u,'2 
where pis the non-dimensional constant - and o is the Prandtl number, 

9'c1 

In tho present case 

Introducing the non-dimensional variables in (4), we get 
( 

zc F (1 - 9 2 ) .  (6) 

From (3) and (Ei), me get I 

at 
(6) 

We now assume that the rate of heat generation pi5 ?it volume in the fluid varies periodically with time* - 
Hence we take 

~f = sin 1. 
at 

(7) 

Equation (6) the? becomes 

aT 
a - = sint + 

at 
(8) 

L& F = I a J t  Tdt bo the Lppllace transform of T and let To be the initial value of T. . 

0 , 

Multiplying equation (8) by e-8t and integrating between the limits zero to infkity, we get 
d F  1 - l' -+ - - -p2T = - ,aT0 + - 

1 $. s2 
(9) 

a y 2  Y a y  
where p2 = us. 

Now we shall find*',. . I 

. . 
Initially the rate of heat generation is zero and the tempetature is steady in the obmnel, Hmoe 

3 + .L 5 = - poy2. 

d?P Y d~ 

The solution of (10) under the boundary conditions 
To = snitewheny = 0 ,  



tituiing this value of To in (9), we get 

(11) 

The solution (11) under the bomdary conditions 

= finite when y -- o' ,  
- 

and T = 0 when y = 1 
c 

- j3u 1-y4 
is T =  - - 

1 6 (  s )' us(l+.s2) (12) 
I 

Now applying Laplace inversion theorem, we get 

8. cost ber tjd; be'rv'; + bei yv'; beid; T = - (1-y4) + - 
16 a [ her2 ,&- + bei24; 

where 

sin t ber y\/L bei 4;- bei y\)u. herd; 
a 

+ -[ ber2 & + bei2 2/& 

the posit'ive roots of J,,(a) = 0, and 

ber yZ/';; = , bei tjd; = 2 (-I)' (4 ~d;)"~' * 

, I=O L O  
-321 + l)!12 

are known as Thompson functions. 

- 
o .7 Pig. 1 for fixed y (y = 0.0, 0.6, 0 -9) showing 
0 . 6  

the variation of T with t have been d r ~ w n  for u = 1, 
/3 = 1; u = 4, /3 = 1 and o = 9, /I = 1. Here 

8,s we have used the first five terms of the transient 
part and the tables4 for Thompson Sunctions for the 

0 .4  

I- 
numerical r~ork. 

0 .3  

0.1 We find that the transient part is very small 
compared to the periodic part when t > 2, hence the 

0. I transient part is insignificant and T varies periodi- 
cally with t in this range. From Fig. 1 it is obvious 

o that the temperature at any point inside the pipe 
t increase8 with the increase of a. The increase of 

Fig 1-Variation'of T with t for q = 1, 4, 9 and temperature with the increase of /3 is also obvious 
p = l  from (13). 
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-Expression (13). for the temperature d&s zi~t agree w%b%al2. His expmasiofi for the ternperaturo 
with the present boundary conditionr does not conti~iathe first and the $st terma baguse he hae solved the 
energy equdion by negleching the dissipation him au&by,aa~urning 

l a = & $ ~  -. . . . 2 . -- - r = r{~g*$ . w - -  
PC @ - 

4 " - I  

whereas in our case di@&pa@5~+,erm has not b e e ~ ~ ~ ~ ~ g l e ~ t e d .  ~ x ~ r e a s h n ~  (l$for fhthk s in 
complete agreemat with similar rdsult obtained bJi Baflabh6 where he h& obtained the 
velocity by udng the method of superposability. f ,. - - - r  - %% 8,' . 

, > 

J , 

Hence f 13) is a more generalsolution if (6) and'has been confirmed by Lapbce tran~forn~ method. , 
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