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Suddenly started laminar flow of an 1ncompress1ble viscous fluid in the entrance region of a porous

circular tube is studied analytically, taking into account the tangential velocity slip at its surface. Adopting a

similarity velocity profile of the form of nth. degree parabola in the boundary layer, the integrated forms

of the equatlons of continuity, momentum and energy are solved by the method of characteristics. The entry

length is seen reduced by the fluid injection across the wall of the tube and increased by the tangential velocity

Ehp at it. Both these factors are found increasing the start-up time required for the full development of the
ow.

- The problem of entry length flow in an impermeable circular tube has been widely studied. A dis-
cussion of earlier work is given in Campbell and Slattery® and more recently in Fargie and Martin2, In
their own analysis Campbeil and Slattery considered. macrospic mechanical energy balance across the en-
tire cross-section in order to take into-consideration the energy loss due to viscous dissipation in the in-
creasingly thickening boundary layer. The suddenly started flow in the entrance region of a circular tube
has been studied by Avula® and by Avula and Young?, respectively assuming a-steady and a time.
dependent inlet velocity, by Schiller’s method of integrating the equation of boundary layer flow with the
help of an assumed parabolic profile and using the Euler’s equation for inviscid fluid flow in the core
region, Noblesse and Farells have followed the method of Campbell and Slattery! in the1r study of
unsteady non-uniform flow in the entrance region of an impermeable circular tube.

Injection of fluid across the walls of channels and pipes is known to reduce the entry length. This
fact may be utilised in obtaining fully developed flow both in industrial designs and in laboratory experi-
ments. Horton and Yuan® investigated steady flow in the entrance region of a porous walled channel
employing Karman-Pohlhausen integral method and assuming both similar as well as non-similar velo-
city profiles. Gupta’ reconsidered the problem by the method of Campbell and Slattery!. On the other
hand, Bansal and Jain8 followed Schlichting?® in dividing the entrance region into two zones, considering
the one near the inlet as the zone of boundary layer growth and adoptmg in the farther ‘zone the method
of progressive deviation from the parabolic velocity profile.

In all these and other investigations of flow in the entrance region of porous walled cha.nnels and tubss
the boundary condition of ‘no slip’ has been applied to the tangential component of velocity. But the
experimental evidenog indicates a tangential velocity slip on account of the smoothening of the boundary
by the fluid trapped in its pores and also owing to the coupled flow taking place inside the: porous medium.
The empirical boundary ¢ondition proposed by Beavers and Joseph!® has been supported and simplified on
statistical considerations by Saffman’’. The phenomenon of velocity slip has also been examined by
Taylor’? and Richardson’® and has been supported by further experiments. —Sparrow, Beavers and
Hung! applied the simplified boundary condition to steady flow in a porous walled tube and channel.

The object of the analysis presented here is to consider the effect of velocity slip on the sta,:tﬁii)” flow

in the entrance region of a porous circular tube. On adopting the boundary conditions'® gs in reference

(14), the flow inside the porous medium of the wall of the tube is not coupled to the main flow in the tube.

Still, it may be added'that wall is assumed sufficiently thick to support a substratum of fluid that gives
rise to the tangential velocity slip at the inner surface of the tube. A general nth. order parabolic-velocity
profile has been assumed for the boundary layer, and the continuity, momentum and energy equations have
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been integrated across the entrie cross section and to dispense altogether with the Euler’s equation for in-

~ viscid flow. The resulting quasi-linear differential equation has Been solved by the method of characteris-
tics. The entry length is defined as the length extending from the inlet to the position where the boundary
layers on the wall join on the axis. ‘Results folfowing from the fourth degres velocity profile are presented
graphically. Sixth degree profile has also been discussed. A similar study has been made by the authors's
for start-up entry length’ ﬂow m a porous walled channel also

EQUATIONS OF MOTION

Cylmdncal polar co-ordinates, such fhat X is measured along the axis of the semi infinite clrcular tube
of rad:us r, and r - perpendicular to it, are employed, the velomty components in these directions being
.7 and v respectively, the. hydtodyﬂamlc fluid pressure being . p The density p-and the kinematic wscosxty
y are constant. Inmally, the entire length of the tube is occupled ‘by.stationary fluid which is suddenly
set in motion at time t=0bya uniform inflow at the tube inlet x=0 with a constant ve1001ty V. At the
same time, the fiuid injection begins taking place across the wall of the tube umformly ‘with. a constant ve- -
locity v, in the radial direction. - Then Re="Vr,/v appears as the Reynolds number of the mdin flow, and '
A==v,r,/v arises as the injection parameter. As pointed out by Schlichting®, in order to eénsure that the
flow with blowing at the wall satisfies the simplifying conditions which form the basis of the boundary -
layer theory, A is not greater than V Rei m ‘magnitude. The following dimensionless variables are introduced.

f=1+ A, - x.= #ry Re, r= T t= tvu/ro, U= ualV, v = v/v,,, P=P/P v?
The equations of contmmty and motion now take the form

a(ur)/3§+3(vr)/ar—0 B )
and R g ; = S
gu/gt + uau/ag + v qufar = — ap/ag‘ + (/\r)‘*1 a(r u/ar)/?r o 2
The boundary cOndmons are’ . ‘
at the entry e 4 Cf=lu=1, v=0 f°1' t=> Oh“; o
attheaxis . :or=0 unUéf,t) w;;r:;o" =0 ) B
at th& wall T - r=1, u=.1u, ‘,(§,, £, v=— 1 7 R -
‘where up is the slip veloc1ty e f e -

Followmg reference (14) the shp velocnty at the surface of a saturated porous matenal is assumed to be
glven by : S :

K _(k% Jou)-( 3u/'1 n)

evaluated at the surface, where k is the permeability of the ma.temal of the tube wall, a a dimensionless cons-
tant also depending upon the nature of this material only and 2u/ an is the gradient of the. tangentia]
velocity in the dizection of the normal to the surface drawn mto the ﬂuld In d1mensmn1ess form, the
‘condition is e W R ~ S

ot

U, =“"B '(?‘%/37)51' ‘ B v ) o - 4)
ﬁ = ki /r() a. : .

In terms of tﬁe boundary layer tmckness 8 the condmons are |

where

- f:g*l T §=0 for £E> at t = () :
| $=0at¢g=1fort>0. | L



Hence, usiﬁg (6)
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‘Let the snmllar veloclty proﬁles m ‘the boundary layer be gweany the nth degree parabola

R u—U[l—~81(1—-y/8)”] O<y<8 : ' :

co u="U, S sy <l (6)

where § (f t)is the boundary layer thickness, y==1—r is the distance from the tube’ wa,!l and §;== 8/(8+nﬁ)
Now by integrating (1) with respect to:r from the axis to the bounda.ry of the tube, it is found that

5 Wdr-—é——l _', )

~ (n + 1) (n + 2) (8 + mwg /o, g 8)

whereQ(a)=282[a—(n+2)]+(8+nﬁ)<n+1>(n+2) BTN Ry

Also by (4), the s11p veloc1ty at the tube wal% is - ‘ / : .
' o= UnBl(8 + nﬂ) - o

Sinc by (7), ‘ (2/3t) _f ur dr-—-—-'O
the mtegral form of the momentum equatlon (2) is obtamed as

opE =24, [1—<ﬂx>—11 —2 (9h38) ; umzr. e

The equatwn descrlbmg the rate of cha.nge of kmenc energy per umt mass is obtamed by mu]tlplymg ea.ch’
term of (2) by u. Inﬁegratmg it with respect to rfor osr < 1 the equatxon governing the ma.croscoplc

energy balance is found to be I

("f—-l ap/ve*uoz L3 Aﬁ)]—(z/» I(m/ar rdre_'

ke

L~k w rir = (502) s el TEALL Ly
Ehmmatlon of (gplag) between (10) and. (11) ylelds a quasxﬁwﬁe&‘efentxal eauatmn = B i
| v S Pl 88/" +P2 ’8/3’5 —'Pa :
where : .
P =@¢-16EEB) | o .
Py (3)=38 (2F, F;— F4 Q)/(2'"' + ) R e ‘
Py (8) =1[3 (n+ 1) (n + 2) Fi/{Bn + 1) (Bn:o- 2)} — 4 F, Q}/(2 » +0+

—l—nBQ[2Q-nB(n+l)(n+2)]+
+ (nQ/N) [(n + 1 (n+2){8(2n———8)—]—23n(2n—-1}/2n—1 eQ]
F,(8) =8 (8503 + 95 n? + 321 + 4) —-84(3n+2){2(n+2)(11n2+6n+1)——
—3BnBn+1)(Tn+2)} + 8 @n+ 1)@Bn+2) {(n+1) (n42) @6+ 1)—
— 688 (n + 2) 3n + 1)+ 6 B2 ? (20 4 1)} + B n+2),‘§3ﬂ+l)(3n+l) .
(Bn 4 2) X [38{(n +1)—28n} +pn (38 + pn)] - T
Fo(O)=3(Tn+2)—28[n +2)3n+1)—28mm + 1]+
+(n—{-2)(2n+1)[82{(n+1)—4ﬁn}+ﬁh (n+1)(28+3n)]
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Fy(8) = 84 (85n® -+ 95n* + 32n -+ 4) — 8 [(» + 2) (3n +2) (11n® 4 65 + 1) —
— Bn (307n® + 359n2 -+ 128n + 16)]—2 8 gn (3n + 2) [2 (n + 2) (11n® + 60 4-1) —
—38n (3n 4 1) (Tn +2)]—3 8 2 3n + 1) 3n + 2) [§ {(n + 2)(Tn+2) —
— 38 (20 + 1)} + 260 (n+2) @0 1] ‘
Fy(3) =8 (Tn+2)— &G + D +2)— 6] —38nn+2 @ +1)—
— 2 Bn (w -*,;j,’,]:)']"—'— 4 ,32 w2(n 4+ 2) (2n 4+ 1)

i

Fo(9)=28—58[n+2)—3pu]—2pn(net2)
G (8)=—2P,+(n+1)(n+2) 8 (3 Fy FoQ — Fo)[(2n 4 1) 3n + 1) (3n + 2)]
The integration of the auxiliary system of ordinary differential equations ‘

d¢[P, = di|P, = d5|P, : ' T
gives PR _ , |

= :"(Pllpa) as, S (13)
and S

L= (PP 8B -

Connecting £ and ¢ ihrough S, the characteristic curves can be drawn in the {—¢,plane, each divi&ing the
plane into two regions. By using the equation’(13) or (14) as may be applicable in"there spective region of
influence of each one of them, the boundary layer thickness may now be determined inversely. .

'NUMERICAL RESULTS FOR #=4" "

The system of auxiliary differential equations (12) has been integrated numerically by Runge-Kutta-
Gill method, taking the fourth order parabolic profile for velocity in the boundary layer. The effect of
velocity slip is ‘rmht out by'comparing the results corresponding to =0.01 with those for =0 (no-slip)
in-the two cases of A=10 and 50, corresponding to small and moderately large mass transfer across the tube
wall. Fig. 1 shows the boundary layer thickiiess, 8 against the axial varidle £ as given by the equation (13).
Since the definition of ¢ involves A, Fig. 2 has been drawn to show the boundary layer thickness explicitly
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Fig. 3--Boundary layer thwkness against time (4th degree
profile).

020+ - Ceaes0
) ‘ A =00V
T
0-15 y "-A=50
_ REGION 1 , , N=0
. =Ami0
0. 10+ . p=001
-A =10
fel
0' T T
001 00 1.05 1.10 115 1.20
€

Fig. 4—(ﬁ21ha)1racteristics in £ — ¢t plane (4th degree pro-
e).

against axial distance > x. Fig. 3 shows boundary layer thickness against time ¢ as given by the equatlon
~ (14). The characteristic curves in the {—¢ plane have been drawn in Fig. 4. Each characteristic curve di-
vides the quadrant into two reglons marked region I and region 2. The region 1 is the range of influence
of the initial curve é=1 (the t-axis for which £>>0). The solution of equation (13) satisfying the boundary
condition 8=0 at =1 for t>0 is appropriate.for this region. On the other hand, the solution of equation
(14) satisfying the boundary condition 8=0at r=0for £>>1 is appropriate in the region 2, which is the range
of influence of the initial curve #=0 (the {— axis for which ¢>>1). Like the fluid injection across the wall
of the tube, the tangential velocity slip at the boundaty also is“seen causing an increase in the area of re-
gion 2 in Fig. 4. This signifies that the boundary layer thickness is a function of time for a longer period.

i.e. the start-up time 1is increased by both these factors.

The estimate of start-up time made by neglecting

the velocity slip is less than the time obtained by taking the slip-grouping parameter as 0.01 by about 15%,.
But these two factors have opposite influence on the entry length by dlffusmg the retarded fluid in the -

boundary layer towards the ax1s
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Fig. 5—Core velocity against axial distance (4th degree
profile).
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The tangential velocity slip, on the other hand

- reduces the skin friction"at the tube wall, thus wea-

kening the cause of boundary layer growth. The
estimate of the entfylength made on the assump-
tion_of no slip at the tube wall is less than the
actua) entry length in the face of velocity slip. The
opposite effect of fluid injection and . velocity slip
is further illustrated by Fig. 5 showing the core
velocity against the axial distance. The injection
of fluid across the walls leads to greater quantity

‘of fluid moving near the axis, causing a larger core
'velocity all through the length of the tube includ-

ing in its inlet length. On the other hand, by reduc~
ing the skin friction at the tube wall, the velocity
slip permits larger flow in the region” nearer to- the
wall so that smaller amount of fluid is left to move
in the core region. The core velocity is, the refore,
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smaller in the inlet length of the tube. At smaller value of the injection parameter, the ultimate magnitude
of the core velocity obtained on the hypothesis of tangential velocity slip is also less than that obtained on
the assumption of no slip, although the difference is not appreciable. But for the larger value of the in-
jection parameter, the ultimate magnitude of core velocity in the length of the tube beyond the inlet re-
gion is larger when the velocity slip is taken into account than it is on the assumption of no slip.

‘A comparison with the ea,rher study on channel flow shows that the effect of tangential velocity
slip is more marked in case of ﬂuld flowing through a tube than it is in case of fluid flowing through a chan-
nel. “The fluid flowing-in'a channel bounded by two infinite parallel plates is affected by the boundaries on
two sides only. But the fluid flowing in a tube is aﬁ‘ected by the condition of tangentlal velocity slip at the
boundary bounding it all round : .

PRESSURE DROP

The pressure gradient in the axial direction
_is obtained from the equation (10) with the help-
of (8).. For the time beyond the start-up, corres-
ponding to the pomts lying in the region 1 of the
characteristic plane d.is a function of £ alone. But
the equation (13) being an invetse relationship,
does not help in. expressing the pressure gradient
explicitly in terms of the axial variable. Therefore,
the pressure drop has to be obtained indirectly by
firgt evaluating it in terms of the boundary layer
thickness 8 by integrating numerically the equation.
dpldd =2(n +-1) (n +2) (2 — 1 [Pz/“ —
{2 Fof(2n 4+ 1) ¥ u(l/X—p) @) GYPs]. = (1D)
From the curves drawn in Flg 6, it ‘is seen that
- while the increased fluid - injection increases the
pressure drop along the axis, the tangential velocity .
slip mellows it a little. This is as expected from the’
X - consideration that in the face of tangential velocity

]5" 6—Pr dion against agial dist 4tn d slip, a smaller pressure gradient: would suffice to
ig. 6—F , r - PP
8 pfgglllgf op against azial distance. ( cgree _overcome the reduced skin fnctlon
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For points lying in the region 2 of the charactens’uc plane 8 is a function of ¢ but is 1ndependent of ¢
Therefore, on treating & as constant with respect to £, the pressure drop along the axis of the tube is ob-
tained as : ’

Po —p~2<n e )f(f——l ) [nfA — pn 2 Fal{(2 + 1) Q} /e (1)

This is valid at any moment”durmg the start-up time only.

NUMERICAL RESULTS FOR n—6

- The numerlcal work presented above lends 1tse1f to easy comparison with (7) and (8). The results for the
case of p=0are in agreement with those in- reference (7) although the entry length obtained here is less than
that obtained in (8). On taking n=6, the entry length is ‘found further greatly reduced. The magnitude o f
the core velocity at any particular: .distance from the inlet in-the shorter entry length is now slightly more

" than that obtained-by taking n==4. “The core velocity in the fully developed flow is now much smallerg
A comparison of the boundary layer thickness § and the core velocity U at some points in the entry length
obtained by taking n=6-and n=4 in the-two cases of A=10 and A==50 is made in Tables 1 and 2. But it
appears that these features are consequences primarily of the geometncal shape of the sixth degree para-

o bolic profile, whieh is quite steep near the boundaries y== -4-1 and much flattened in the niiddle. Its steep

gradlent near the boundaries leads to smaller values of ¢ co1respond1ng to 8=1. The bigger core region

6
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"' COMPARATIVE VALUES OF 3 AND. U AGAINST x for A =10

i

NV e , . =0
x ’ noo 8 - U ' Lox : n . ‘ 5 v
0.0011 6 0.60  1.1947 0.0010 6 0.65 1.2088
4 030 LTS o - . 4 0.43  1.2236
0.0020 6. . 08 - 1.295 0.0017 - 6 0.83 1.3110 .
4 0.53 1.2698, - - T A 1058 1.2927
0.0029 6 100 “1.3845 ~0.0026 VSR 007 1.4029
s o 102 4 0.66 - 1:3800
| CTABLE 2
. . . CoMPARATIVE VALUES OF 8 ANDYU AGAINST X FOR A = 50
- T — T, . @
0.0005 6 0.60 1.2262 6 0.63 1.2440 -
4 0.40 1.2156 4 043 1.2388
0.0008 6 0.82 1.3456 6 078 1.3265
4 1.3172 u L4 054 13183
0.0011 6 1.4542 6 1.00 1.4675
4 1.4127 4 0.8 1.4470

corresponding to the flattened portion of the veloci ofile calls for a smaller core velocity to, causz the
same flux across any givep cross section. Since ‘tha sixth degree parabola does A@%appear to b2 a good ap-
proximation to the fully devclopedyﬁm@pwﬁle even in the case of mass transfer across the tubs wall,
its discussion is not pursued in greater detail here.. However, such a profile does noLgeem to be relevant
in a short distance in which the plug flow near the inlet changes into the parabohc flow's. Therefore it
may be examined whether an estimate of the entry length and start-up time can be made by taking n=6
for 0<8<c and n=4 for c<d<1, ¢ being some empirically chosen numbegiying between 0'and 1, pro-
vided that this does fot give rise to any analytic discontinuity. i
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