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Suddenly started laminar flow of an incompressible viscous fluid in the entrance region of a porous 
circular tube is studied analytically, taking into account the tangential velocity slip at its surface. Adopting a 
similarity velocity profile of the form of nth. degree parabola in the boundary layer, the integrated forms 
of the equations of continuity, momentum and energy are solved by the method of characteristics. The entry 
length is seen reduced by the fluid injection across the wall of the tube and increased by the tangential velocity 
slip at it. Both these factors are found increasing the start-up time required for the full development of the 
flow. - - 

The problem of entry length flow in an impermeable circular tube has been widely studied. A dis- 
cussion of earlier work is given in Campbell and Slatteryl and more recently in Fargie and Martinz. In 
their own analysis Campbell and Slattery considered- macrospic mechanical energy balance across the en- 
tire cross-section in order to take into-consideration the energy loss due to viscous dissipation in the in- 
creasingly thickening boundary layer. The suddenly started flow in the entrance region of a circular tube 
has been studied by Avulas and bg. Avda and Young4, respectively assuming a steady and a time- 
dependent inlet velocity, by  chiller's method of integrating the equation of boundary layer flow with the 
help of an assumed parabolic profile and using the Euler's equation for inviscid fluid flow in the core 
region. Noblesse and Farell5 have followed the method of Campbell and Slatteryl in their study of 
unsteady non-uniform flow in the entrance region of an impermeable circular tube. 

Injection of fluid across the walls of channels and pipes is known to reduce the entry length. This \ 

fact may be utilised in obtaining fully developed flow bath in industrial designs and in laboratory experi- 
ments. Horton and Yuan6 investigated; steady flow in the entrance region of a porous walled channel 
employiq K a r m a - P o m n  integral method and assuming both similar as well as non-similar velo- 
city p r o w .  Gupta' reconsidered the problem by the method of Campbell and Slatteryl. On the other 
hand, Band and Jain8 followed Schlichtingg in dividing the entrance region into two zones, considering 
the one near the inlet as the zone of boundary layer growth and adopting in the farther'zone the method 
of progressive Beviation from the parabolic velocity profile. 

In all these and other investigations of flow in the entrmce region of porous walled channels and tubss 
the boundary condition of 'no slip' has been applid to the tangential component of velocity. But the 
experimental evidence indicates a tangential velocity slip on account of the smoothening of the boundary 
by the fluid trapped in its pores and also owing to the coupled flow taking place inside the prous  medium. 
The empirical boundary condition proposed by Beavers and Josephl%as been supported and simplified on 
statistical considerations by Saffmanll. The phenomenon of velocity slip has also ,been examined by 
T a y l o r l k d  Richardsonla gnd has been supported by further experiments. Sparrow, Beavers and 
Hungl4 applied the simplified boundary condition to steady flow in a porous walled tube and channel. 

The object of the analysis pltesented here is to consider the effect of velocity slip on the  star^&^ flow 
in the entrance region of a porous circular tube. On adopting the boundary conditionslS w in reference 
(14), the flow inside t$e porous medium of the wall of the tube is not coupled to the main flow in the tube. i 
Still, it may be added that wall is assumed sufficiently thick to support a substratum of fluid that givcs 
rise to the tangential velocity slip at the inner surface of the tube. A general nth. order parabolic-velocity 
profile has been assumed f ~ r  the boundaq layer, and the continuity, momentum and energy equations have 
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been integrated across the entrie cross section and to dispense altogether with the Euler's equation for in- 
viscid flow. The resulting quasi-linear differential equation has Been solved by the method of characteris- ', 

tics. The entry length is defined as the length extending from the inlet to the position where the boundary $ 

layers on the wall join on the axis. ResuftCfolfowing from the fourth degree velocity profile are presented 
graphically. Sixth degree profile has also been discussed. A similar studyhas been made by the authorsfa 
for start-up entry length flow in a porous walled .channel also. 

EQUATIOWS'OF M O T I O N  

Cgindrical polar co-ordinates, such (hat x i s  measured along the axis of the semi infinite circular tube 
of radius ro and r-erpendicular to it, are employed, the velozy components in these directions being 

respectively, the hydrodydamic fluid pressure being p. The density p and the kinematic viscosity 
are constant. Initially, the entire length of the tube is occupied-by stationary fluid which is suddenly 

set in motion at time t=0 by a uniform iaflow at the tube inlet ;=O with a constant velocity V. At the 
same time, the fluid injection begins taking place across the wall of' the tube uniformly with a constant ve- 
locity vo in the radial direction. Then Re= Vro/v appears as the Reynolds number of the main flow, and 
~ = v o r o l v  arises as the iajectigo parameter. As pointed out by Schlichtingg, in order to ensure that the 
flow with blowing at the wall satisfies the simplifying conditions which form the basis of the boundary 
layer theory, A is not greater than d Re in magnitude. The Pollowiog di&ensionless variables are introduced. - - - - - 

t = - l + h x ,  x=x/r,Re, r=r/r , ,  t=tv,/r,, u=u/V, v = v l & , p ~ p / ~ v  2 

~h~ of continuity and motion now take the form 

_ a (U r ) / 3  E + 3 (v-r)/a r = 0 \ (1) 

and 
3u13t + qu/aE + v aular = - aplat + (hr)'l8(r:u/ar)/?r. (2) 

 he boundary conditions ar,e' - 
--, 

- 7  
0 

at the entry E =  1, u =  1, v = O  f o r t 2 0  

at theax is  . . _r = . ?, -u = Cf, t),- ptxa+o, v,.=$J (3) 

at the wall ^ r =  1, U = U ,  ( [ , t ) ,  v = - 1 .  ' 

where uo is the slip velocity" 

Following reference (14), the slip velocity at the surface of a saturated poro~s~platerial is assumed to be - .  - , -  . ". - 
given by 4 . -  

6 = (kB fa) (ac]a 2 )  
malmd at the suif&; <%&clk is the permeability of th&.mite"k&d the tube wall, ci a dimensionless oons- 
tant also dcp%oding upon the nature of this material only and 2i an is the'gradient of the tangential 
velocity in the *ation of the ncfrnsd-to the surface drawn into the fluid. In dimensionless form, the . - 
condition is r % ~  , a c r  . 

- - . - 
uJ = - P ( ? U I ~ ~ I ~ - I  (4) 

,-.' wbre j3 = ki /ro u. 
X h  

In terms of thd boundary layer thickness 6, the condi'tions are> 
. - 6 - - - - O f o r c >  l a t t = Q  

s .  

and - - - ( 5 )  

# = O a t { =  l f o r t 2 0 .  

J 
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Let the similar velocity - profiles - in-the boundary lay& be given by thi n& degree parabola 
R w =  u [ I  - S ~ ( I - - y l ~ ) " ] ,  
h 7  

u =  W ,  (6) 

where 8  (4, t) is ihe boundary layer thickness, y== I-r is the distance from the tubeW\n,ah-and a,== 8/(8+n/l), 
Now by integrating (1) with respect to r  from the axis,to the boundary of the tube, it is found t&t 

1 

Hence, using (6) 

where Q (8) = 2 82 

Also, by (4), the slip 

Since, by (7), 

velocity at the tube wall is 

uo = u nBI(8 + nB)a 

the integral form of the momentum equation (2) is obtained as 
. . 1 

ap/% = 2  uO.[ l  - (PA)-$] - 2 ( a / a t )  5 u2 r p . ~  
6 

(10) 

The equation describing the o&h&of' kinetic energ$ uht  mass is'obtained by multiplyiiig each 
term of (2) bL u. kteg&ting it.with respect - to , -  r for 0 6 r 6-1,  . -  the , * +  equation - -  governing the macroscopic 
energy balance is found to be * a 

1 
~ - . .  e 

(3f - 1) (a(p/?S) = uo2 [l - 2/(Ap)]  - (-2/h) j ( ; ~ / 3 r ) ~  r dr - 
- 8 

0 

, f". 
- .  1 

'- (?/?t) 'J u2 r dr -L (3/3f) j eij r dr. , ,- -. (11) 
0 0 

atial aoilation 

P3 (8)  = 13 (f i  + 1) (n + 2 )  E; / { (3n + 1) (3%-7t 21)) - 4 Q]/P n  + 1) -t 
+ f i P Q [ 2 Q - f i B C a + Q ( a 4 - 2 ) 1  -k 
+ (nQ/A) [ (n  + 1 )  ( f i  i- 2) ( 8  (2 f i  - 8)  + 2 B (2a - 1 ) ) / ( 2  12 - 1) -%I , 

F, (8)  = ti5 (85 na + 95 n2 + 32 n + 4) S4 (3n + 2)  ( 2  (n + 2 )  ( l l n 2  + 6n + 1 )  - 
- 3 B f i  (3fi + 1 )  (7% + 2 ) )  + (3n + 1)(3n + 2) ( ( f i  + 1 )  ( m  ,+ 2 )  (2n 
- 6/3n (f i  + 2) (3% + 1 )  + 6  ,!I2 n2 (212 + 1 ) )  + Pn (n + 2)  1) (3 f i  
( 3 % + 4 )  x [ 3 8 2 ( ( n + I ) - 2 / 3 n )  + j 3 ~ ( 3 8 + P ~ ) 1  - - 

P, (8) = (7n + 2) - 2 68 [ ( n  + 2 )  (3 n  + 1) - 2  pan + I ) ]  + 
+ (a + 2) (2% + 1) [a2 { ( n  + 1) - 4 ,!I%) + ph (% + 1 )  (28 + . . 
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P, ( 8 )  = 6q85rYS + 95n2 f 32s + 4) - a3 [(fi + 2)  (3% +$) (11n2 + 6? f 1) - 
- fin (307n3 + 359n2 + 1 2 8 ~  + 16)] - 2 6' (3% $ 2) [2 (% 2) ( 1 1 ~ ~  + 6% + 1) - 
- 3 fin (3% + 1) (7% + 2.)] - 3 /Y n2 (3n + 1 )  (3% + 2) [a { (n  + 2) (7% 2) - 
- 3 fin (2m + 1)) f 2 f i ~  (a -t- 2) (2% + 1)1 

F4 (6)  = 63 (7% + 2) - 82% + 1) [(a f 2) - 6 pm] - 3 a p ~  [ (a  2) ( 3 ~  + 1 )  - 
- 2 fin ( n  +*I)]  - 4 p 2  ~ ~ ~ ( n  $ 2 )  (2n + 1) 

~ ~ ( 8 ) = % 8 ~ - ~ [ i n + 2 ) - 3 p n ] - 2 B ~ ( n i ~ )  

Gl (6) - 2P2 + (12 + 1) ( n  + 2 )  (3 P,/Q - P,)/€P* + 1 )  (3n f 1) ( 3 ~  4- 2)1 

The integration of the auxiliary system of ordinary differential equations 
a tp1  = a t p a  = . a s l ~ ~  (12) 

gives 

Connecting t and t through 6, the characte~i$tic curves can be drawn in the 5,-t.plane, each dividing the 
plane into two regions. By using the equation (13) or (14) as may be applicable in'there g(rective region of 
influence of each one of them, .the boundary layer thickness may now be determbd inversely. 

N U M E R I C A L  R E S U L T S  

The system of auxiliary differential equations (12) has been integrated numerically by Range-Kutta- 
Gill method;-taking the fourth order parabolic profile for velocity in the boundary layer. The effect of 

--wc velocity slip is brought out by:wmparing the results corresponding to P=O.Q1 with tbose for p=0 (no-slip) 
in the two cases of A= 10 and 50, corresponding to small qql knoderately large miss transfer across the tube 
wall. Fig. 1 shows the boundary laper thickness, S ag&nst the axial 5 as given by the equation (1 3). 
Since the definition of involves A, Fig. 2 has been drawn to show the boundary layer tbi@ms explicitly 
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n nn 

9 

Fig. 3-~oundary layer thickness against time (4th degree Fig. 4-Characteristics in 6 - t plane (4th degree pro- 
profire). file). 

I 

against axial distance x. Fig. 3 shows boundary layer thickness against time t as given by the equation 
(14). The characteristic curves in the f-t plane have been drawn in Fig. 4. Each characteristic curve di- 
vides the quadrant into two regions marked region 1 and region 2. The region 1 is the range of influence 
of the initial curve [=I (%he t-axis for which t30). The solution of equation (13) satisfying the boundary 
condition S=O at 6=1 for ?>O is appropriate-for this region. On the ather hand, the solution of equation 
(14) satisfying the boundary amditim at t=O for 5 3  1 is appropriate in the region 2, which is the range 
of intluence of the initial curve t=O (the 5- axis for which (>I). Like the fluid injection across the wall 
of the tube, the tangential velocity slip at the boundaiy also is-seen causing an increase in the area of re- 
gion 2 in Fig. 4. This signifies that the boundary layer thickness is a function of time for a longer perjod. 
i.e. the start-up time is increased by both these factors. The estimate of start-up time made by neglecting 
the velocity slip is less than the time obtained by taking the slip-grouping parameter as 0.01 by about 15 %. 
But these two factors have opposite influence on the entry lengt'h by diffusing the retarded fluid in the 
boundary layer towards the axis. % 

2,007 -As50  ,4=0 The tangential velocity slip, on the other hand 
- reduces the skin friction'at the tube wall, thus wea- - A=50 , p  = 0  01 

T kening the cause of boundary layer growth. The 
-A= lO ,P=O estimate of the entry 4ength made on the assump- 

tion-of no slip at the tube wall is less than the 
I 

actual entry length in the face of velocity slip. The 
opposite effect of fluid injection and velocity slip 
is further illustrated by Fig. 5 showing the core 
velocity against the axial distance. The injection 
of fluid across the walls leads to greater quantity 
of fluid moving near the axfs, causing a larger core 
velocity all through the length of the tube includ- 

1 

l 
ing in its inlet length. On the other hand, by reduc- 

o o 005 o 01 ing the skin friction at the tube wall, the velocity 
x slip permits larger flow in the region nearer toz the 

Fig. 5-Core velocity against axial distance degree wall so that smaller amount of fluid is left to move 
profile). in the core region. The core velocity is, the refore, 
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smaller in the inlet length of the tube. At smaller value of the injection parameter, the ultimate magnitude 
of the core velocity obtained on the hypothesis of tangential velocity slip is also less than that obtained on 
the assumption of no slip, although the difference is not appreciable. But for the larger value of the in- 
jection parameter, the ultimate magnitude of core velocity in the length of the tube beyond the inlet re- 
gion is larger when the velocity slip is taken into account thgn it is on the assumption of no slip. 

A comparison with the wlier study on channel flow shows that the effect of tangential velocity 
slip is more marked in case of fluid flowing through a tube than it is in case of fluid flowing through a chan- 
nel. The fluid flowing-in a channel bounded by two infinite parallel plates is affected by the boundaries on 
two sides only. But the fluid flowing in a tube is affected by the condition of tangential velocity slip at the 
boundary bounding it all round. 

P R E S S U R E  D R O P  . 
The pressure gradient in the axial direction 

is obtained from the equation (10) with the 4elp 
of (8). For the time beyond the start-up, corres- 
ponding to the points lying in the region 1 of the 
characteristic plane: 6 is a function off alone. But 
the equation (13) being an inverse relationship, 
does not help in expressing the pressure gradient 

a explicitly in terms of the axial variable. Therefore, 
no the pressure drop has to be obtained indirectly by 

Zirs,t evaluating it in terms of the boundary layer 
thickness 6 by integrating numerically the equqtion. 

dplds = 2 (la + 1) (B -I- 2) (2 I -- 112 [P2/0  - 
(2  F21(2fi + 1) -I- ~ ( l l h  -- 8) Q3 GI/P~I. (15) 
From _the curves drawn in Fig. 6, it is seen that 
while the increased fluid injection :increases the 
pressure drop along the axis, the tangential velocity 
slip mellows it a little. This is as expected from the 

X consideration that ,in the face of tangential velocity 
slip, a smaller pressure gradient would suffice to 

Rg. 6-Pressure drop against axial distance (4th degree 
profile). overcome the reduced skin friction. 

For points lying in the region 2 of the characteristic plane 6 is a function of t but is independent of 6. 
Therefore, on treating 6 as constant wjth respect to 6, the pressure drop along the axis of the tube is ob- 
tained as . 

P O - p =  2 (B + I) (n + 2) I (I- 1 )  [?z/h - -  j3fi 4- 2pz1{(8$% + 1 )  I/&. (16) 
::c- ,- 

This is valid at any moment during the start-up , 

N U M E R I C A L r R E S U L T S  F O R  n = 6  

The numerical work presented above lends itself to easy comparison with (7) and (8). The results for the 
case or p=O are in agree-t with those in reference (7) althougxthe entry length obtained here is less than 
that obtained in (8). On taking, a=6, the entry length is found further greatly reduced. The magnitude of 
the core velocity at any particulard@tance from the inlet in the shorter entry length is now slightly more 
than that obtained-by taking n=4. The core velocity in the fully developed flow is now much smaller' 
A comparison of the boundary layer thickness 6 and the core velocity U at some points in the entry length 
obtained by taking n=6 and n=4 in the- two caqes of h=10 and h=50 is made in Tables 1 and 2. But it 
appears that these features consequences primarily of the geometrical shape of the sixth degree para- 
bolic profile, which is quite steep near the boundaries y= f 1 and inuch flattened in the middle. Its steep 
gadient near the boundaries leads to smaller values of f co~responding to S= 1. The bigget core region 






