FLIGHT-PATH CHARACTERISTICS FOR FEW RE-ENTRN: TRAJECTORAEA:

S. K. GURTi*
Terminal Ballisties Research Laboratory, Chandigarh

(Received 1 April 1971 ; revised 23 Augusi 1971)
 flight, etc. are obtained for object entry in a planetary atmosphere when (i) rate of change of velocity is proportional to the nth power of the velocity, and (ii) rate of change of altitude is proportional to the p th power of the velocity. Loh's results for constant deceleration flight and constant rate of change of descent flight are obtained as particular cases. Finally, trajectory characteristics are obtained for constant rate of change of range flight.

NOTATIONS

$A=$ reference area for lift and drag. expressions. (sq- ft.)
$C_{D}=$ drag coefficient
$D=$ drag (lb.)
$g=$ acceleration due to gravity (ftid $/ \mathrm{sec}^{2}$)
$L=$ lift (lb.)
$m=$ mass (slugs)
$R=$ range (ft.)
$R_{0}=$ radius of earth (ft.)
$s=$ distance along flight-path (ft.)
$V=$ velocity (ft./sec.)
$\theta=$ angle of entry
$\beta=$ atmospheric density coefficient such that $\rho=\rho_{0} e^{-\beta y}$ where ρ_{0} is atmospheric density at earth's surface and $y=$ altitude.-

The problem of vehiole entry into platiotary atmosphere is gradually reoeiving increasing attention. Gazley ${ }^{1}$, Allen ${ }^{2}$, Eggers ${ }^{3}$ and Chappl ${ }^{4}$ have considered the case of ballistic-type entry without lift at sufficiently large angles of inclination where both the gravity force and centrifugal force have. been neglected.

Loh ${ }^{5,6}$ has given analytical solutions on the dynamical aspect of various linds of re-entry trajectories. He has considered the case for constant and for variable lift-drag ratios. His approach is more general and the results of earlier investigators' 4 come out as particular cases. The present paper is essentially aimed at generalizing Loh's results for constant deceleration flight and constant rate of change of descent flight and also dealing with a new type of re-entry trajectory. The results for all the above three cases are for variable L/D ratios.

Rate of Change of Veloity Va:ies as the nth power of Velocity

In a non-rotating two dimensional inertial coordinate system with its origin at the centre of the earth or planet the equations of motion are ${ }^{5}$

$$
\begin{gather*}
\frac{d^{2} V^{2}}{d s}+\frac{2 g}{L / D}\left[\left(1-\frac{V^{2}}{g R_{0}}\right) \cos \theta-\frac{V^{2}}{g}\left(\frac{d \theta^{2}}{d s}\right)\right]=0 \tag{1}\\
-\left(\frac{C_{D} A}{m}\right)\left(\frac{1}{2} \rho V\right)=\frac{d \dot{V}}{d t}=\frac{1}{2} \frac{d V^{2}}{d s} \tag{2}
\end{gather*}
$$

*Present address :- Defence Science Laboratory, Metcalfe House, Delhi-6;

For high speed re-entry the-gravity component in the drag direction is usually small in comparison with drag itself ; consequently, it has been neglected in (2).

The trajectory characteristics at

$$
\begin{equation*}
\frac{d V}{d t}=K_{2} V^{n} \tag{3}
\end{equation*}
$$

are now worked out,
Density:-From (2) and (3) the expression for density is.

$$
\begin{equation*}
\rho=-\frac{2 m K_{2}}{C_{D} A V^{2-n}} \tag{4}
\end{equation*}
$$

Altitude:-From the altitude-density relation and equation (4)

$$
\begin{equation*}
y=-\frac{1}{\beta} \ln \left[-\frac{2 m K_{2}}{\rho_{0} C_{D} A V^{2-n}}\right] \tag{5}
\end{equation*}
$$

Time of flight:-Integrating (3),

$$
\begin{equation*}
t=-\frac{1}{K_{2}(1-n)}\left[V_{i}^{1-n}-V^{1-n}\right] \tag{6}
\end{equation*}
$$

where subscript i, here or elsewhere, denotes initial values.
Distance along fight-path:-The distance along flight-path using (6) is

$$
\begin{equation*}
s=-\frac{1}{(2-n) K_{2}}\left(V_{i^{2}-n}-V^{2-n}\right) \tag{7}
\end{equation*}
$$

Velocity:-The expression for velocity in terms of altitude, is obtained from (2), (3) and the densityaltitude relation

$$
\begin{equation*}
V=\left(-\frac{2 m K_{2}}{\rho_{0} C_{D} A}\right)^{1 /(2-n)} e^{\beta y /(2-n)} \tag{8}
\end{equation*}
$$

Angle of inclination:-From relation $\sin \theta=-d y / d s$ and (5) and (7), the entry angle is given by

$$
\begin{equation*}
\sin \theta=-\frac{K_{2}(2-n)}{\beta V^{2}-n} \tag{9}
\end{equation*}
$$

Lift-drag ratio:-From (1), (7) and (9) on simplification,

$$
\begin{align*}
\frac{L}{D}= & \frac{(2-n)^{2} K_{2}}{\beta}\left[V^{4-2 n}-\left\{\frac{K_{2}(2-n)}{\beta}\right\}^{2}\right]^{-1 / 2}- \\
& -\frac{g}{K_{2}}\left[V^{4-2 n}-\left\{-\frac{K_{2}(2-n)}{\beta}\right\}^{2}\right]^{1 / 2} Z \tag{10}
\end{align*}
$$

where

$$
\begin{equation*}
Z=\frac{1}{V^{2}}-\frac{1}{g R_{0}} \tag{11}
\end{equation*}
$$

Range:- In the relation $d R=\cos \theta d s$, substituting value of $\cos \theta$ from (9) and $d s$ from (7) on integra-. ting and simplifying

$$
\begin{align*}
R= & \frac{1}{\beta}\left[\left(\left\{\frac{\beta V^{2-n}}{(2-n) K_{2}}\right\}^{2}-1\right)^{\frac{1}{2}}-\left(\left\{\frac{\beta V_{i}^{2-n}}{(2-n) K_{2}}\right\}^{2}-1\right)^{\frac{1}{2}}\right]- \\
& -\frac{1}{\beta}\left[\sec ^{-1} \frac{\beta V^{2-n}}{(2-n) K_{2}}-\sec ^{-1} \frac{\beta V_{i}^{2-n}}{(2-n) K_{2}}\right] \tag{12}
\end{align*}
$$

It may perhaps be mantioned here that the expression for range as given by Loh ${ }^{5}$ is erroneous. The actual expression can be obtained by putting $n=0$ in above equation.

When the index n vanishes, equations (4) to (10) give flight-path characteristics for constant deceleration flight ${ }^{\text {s }}$.
Rate of Change of Altitude varies as the pth Power of the Velocity
The trajectory characteristics are now analysed for entry at

$$
\begin{equation*}
\frac{d y}{d t}=K_{3} V^{p} \tag{13}
\end{equation*}
$$

Angle of inclination:-From the relation $\sin \theta=-d y / d s$ and above relation.

$$
\begin{equation*}
\sin \theta=-\left(\frac{C_{19} C_{D} A}{2 \beta m}\right) V^{-1+p} \tag{14}
\end{equation*}
$$

where

$$
\begin{equation*}
C_{19}=2 m \beta K_{3} / C_{D} A \tag{15}
\end{equation*}
$$

Density:-Using (2) and (13), the relation $d \rho=-\beta \rho d y$ and integrating

$$
\begin{equation*}
\rho=C_{18}-\frac{C_{19}}{(1-p)} V^{-1+p} \tag{16}
\end{equation*}
$$

where

$$
\begin{equation*}
C_{18}=\rho_{i}+\frac{2 m \beta K_{3}}{C_{D} A(1-p) V_{i}^{1-p}} \tag{17}
\end{equation*}
$$

Flight-path distance:-Substituting (16) into (2), integrating, and simplifying

$$
\begin{equation*}
s=\left[\frac{2 m}{C_{18} C_{D} A(1-p)}\right] \ln \frac{(1-p) C_{18} V_{i}^{1-p}-C_{19}}{(1-p) C_{18} V^{1-p}-C_{19}} \tag{18}
\end{equation*}
$$

Range:-In the relation $d R=\cos \theta d s$ substituting value of $\cos \theta$ from (14) and $d s$ from equalion (18) and integrating

$$
\begin{align*}
R= & \frac{2 m(1-p)}{C_{D} A} \int_{V_{i}}^{V}\left[V^{2-2} p-\left(\frac{C_{19} C_{D} A}{2 \beta m}\right)^{2}\right]^{\frac{1}{2}} \cdot \\
& \cdot\left[C_{19} \nabla-C_{18} V^{2-p}(1-p)\right]^{-1} d V \tag{19}
\end{align*}
$$

The value of R can be evaluated by numerical integration.
Altitude:-Using relation $\rho=\rho_{0} e^{-\beta y}$ and (16) on simplification

$$
\begin{equation*}
y=-\frac{1}{\beta} \ln \left[e^{-\beta y_{i}}+\left\{\frac{C_{19}}{(1-p) \rho_{0}}\right\}\left\{\nabla_{i}^{-1+p}-\nabla^{-1+p}\right\}\right] \tag{20}
\end{equation*}
$$

Velocity:--The expression for velocity, as a function of altitude, follows from above

$$
\begin{equation*}
\nabla^{-1+p}=\nabla_{i}^{-1+p}-\left\{\frac{(1-p) \rho_{o}}{C_{19}}\right\}\left\{e^{-\beta y}-e^{-\beta y_{i}}\right\} \tag{21}
\end{equation*}
$$

Deceleration and Maximum Deceleration:-The deceleration expression follows from (2) and (16) as

$$
\begin{equation*}
\frac{d V}{d t}=-\left(\frac{C_{D} A}{2 m}\right)\left[C_{18} \nabla^{2}-\frac{C_{19}}{(1-p)} \nabla^{1+p}\right] \tag{22}
\end{equation*}
$$

and the expression for maximum deceleration is

$$
\begin{equation*}
\left(\frac{d V}{a t}\right)_{\max }=\left(\frac{C_{D} A}{2 m}\right) \frac{C_{19}^{2 /(1-p)}}{2^{2 /(1-p)} C_{18}^{(1+p) /(1-p)}}\left(\frac{1+p}{1-p}\right)^{(1+p) /(1-p)} \tag{23}
\end{equation*}
$$

where

$$
\begin{equation*}
\nabla_{(d \cdot / d t)}{ }_{\text {max }}=\left[\left(\frac{C_{1 \underline{q}}}{2 C_{18}}\right)\left(\frac{1+p}{1-p}\right)\right]^{1 /(1-p)} \tag{24}
\end{equation*}
$$

Time of fight:-The expression for flight-time using (18) is

$$
\begin{equation*}
t=\int_{V_{i}}^{V} \frac{d s}{V}=-\left(\frac{2 m}{C_{D} A}\right) \int_{V_{i}}^{V} \frac{(1-p) d V}{(1 \quad p) C_{18} V^{V^{2}}-C_{19} V^{1+p}} \tag{25}
\end{equation*}
$$

whiet can be solved by numerical integratibn?

Lift-drag ratio:-Using equations (1), (14), (18), (22) and simplifying the lift-drag ratio is

$$
\begin{equation*}
\frac{L}{D}=(1-p)\left(\frac{2 g m}{C_{D} A}\right) \frac{\left[V^{2-2 p}-K_{3}^{2}\right]^{1 / 2} Z}{\left[C_{18}(1-p) V^{1}+p-C_{19}\right]}+(1-p) K_{3}\left[V^{2-2 p}-K_{9}^{2}\right]^{1 / 2} \tag{26}
\end{equation*}
$$

A^{\prime} b before it can be easily seen that if the exponent p is 0 , equations (14) to (26) yield resulfs for constant rate of descent flight ${ }^{5}$.

Constant Rate of Chainge of Range Flight

It is now proposed to andidyserandifferent type of re-entry trajectory for which

$$
\begin{equation*}
\frac{d R}{a t}=K_{1} \tag{27}
\end{equation*}
$$

Angle of inclination:-The expression for angle of inclination from above is

$$
\begin{equation*}
\sin \theta=\left(V^{2}-K_{1}^{2}\right)^{\frac{1}{2}} V^{-1} \tag{28}
\end{equation*}
$$

Density:-Using relations (2), (28), the relations $\boldsymbol{N}_{\rho}=-\beta_{\beta} d y$ and $\sin \theta=-d y / d s$ and simplifying

$$
\begin{equation*}
A=\sigma_{24}-C_{25}\left[\ln \left\{-\frac{V+\left(V^{2}-K_{1}^{2}\right)}{K_{1}}\right\}-\frac{\left(\nabla^{2}-K_{1}^{2}\right)^{\frac{1}{2}}}{\nabla^{2}}\right] \tag{29}
\end{equation*}
$$

where

$$
\begin{equation*}
C_{24}=\rho_{i}+C_{28}\left[\ln \left\{\frac{\nabla_{i}+\left(V_{i}^{2}-K_{1}^{2}\right)^{\frac{1}{2}}}{K_{1}}\right\}-\frac{\left(V_{i}^{2}-K_{1}^{2}\right)^{\frac{1}{2}}}{V_{i}}\right] \tag{30}
\end{equation*}
$$

and

$$
\begin{equation*}
C_{23}=2 \beta \mathrm{~m} / C_{D} A \tag{31}
\end{equation*}
$$

Altitude:-Using the alititude-derisity relation, (29) and simplifying, the altitude in terms of V is

Gurrv : Flight. Path Characteristios

$$
\begin{align*}
y= & \frac{1}{\beta} \ln \left[e^{-\beta y_{i}-\frac{C_{23}}{\rho_{0}} \ln \left\{\frac{V+\left(V^{2}-K_{1}^{2}\right)^{\frac{1}{2}}}{V_{i}+\left(V_{i}^{2}-K_{1}^{2}\right)^{\frac{1}{2}}}\right\}+}\right. \\
\quad & \left.+\frac{C_{23}}{\rho_{0}} \ln \left\{\frac{\left(V^{2}-K_{1}^{2}\right)^{\frac{1}{2}}}{V}-\frac{\left(V_{i}^{2}-K_{1}^{2}\right)^{\frac{1}{2}}}{V_{i}}\right\}\right] \tag{32}
\end{align*}
$$

Deceleration:-From (2) and (29) the expression for deceleration is

$$
\begin{equation*}
\frac{d V}{d t}=\left(-\frac{C_{D} A}{2 m}\right)\left[C_{24}-C_{23} \ln \left\{\frac{V+\left(V^{2}-K_{1}^{2}\right)^{\frac{1}{2}}}{K_{1}}\right\}+C_{23} \frac{\left(V^{2}-K_{1}^{2}\right)^{\frac{1}{2}}}{V}\right] V^{2} \tag{33}
\end{equation*}
$$

For maximum deceleration

$$
\frac{d}{d V}\left(\frac{d V}{d t}\right)=0
$$

which gives the value of V in implicit form as

$$
\begin{equation*}
\frac{2 C_{24}^{\prime}}{C_{23}}=2 \ln \left\{\frac{\dot{V}}{K_{1}}+\left[\left(\frac{V}{K_{1}}\right)^{2}-1\right]^{\frac{1}{2}}\right\}-\left[1-\left(\frac{K_{1}}{V}\right)^{2}\right]^{\frac{1}{2}} \tag{34}
\end{equation*}
$$

This value of V when substituted in (33) gives maximum deceleration.
Flight-path distance:-This follows from (2) and (29) on integration

$$
\begin{equation*}
s=\left(-\frac{2 m}{C_{D} A}\right) \int_{V_{i}}^{V} \frac{d V}{V f^{\prime}(V)} \tag{35}
\end{equation*}
$$

where

$$
\begin{equation*}
\rho=f(V)=C_{24}-C_{25} \ln \frac{V^{"}+\left(V^{2}-K_{1}^{2}\right)^{\frac{1}{2}}}{K_{1}}+C_{23} \frac{\left(V^{2}-K_{1}^{2}\right)^{\frac{1}{2}}}{V} \tag{36}
\end{equation*}
$$

Range:-From the relation $d R=\cos \theta d s$ and (27) and (36), on integration

$$
\begin{equation*}
R=\left(\frac{-2 m K_{1}}{C_{J} A}\right) \int_{V_{i}}^{V} \frac{d V}{V^{2} f(V)} \tag{37}
\end{equation*}
$$

Time of flight:-The expression for time of flight is

$$
\begin{equation*}
t=\int_{V_{i}}^{V} \frac{d s}{V}=\left(\frac{-2 m}{C_{D} A}\right) \int_{V_{i}}^{V} \frac{d V}{V^{2} f(V)} \tag{38}
\end{equation*}
$$

The last three characteristics, viz flight-path distance, range and time of flight can be evaluated by numerical integration.

CONCLUSIONS

The first entry case at $\frac{d V}{d t}=K_{2} V^{n}$ is particularly interesting. At $n=0$ it reduces to the constant deceleration flight ${ }^{5}$. It may be mentioned that constant deceleration flight is specially useful for proper entry into Jupiter.

Further, the results for constant rate of average heat input flight ${ }^{5}$ can be deduced by putting $n=-1$ and suitably choosing K_{2}.

The second and third entry cases, however, are more of general interest.

Der. Sci. J., Vol. 22, July 1972

ACKNOWLEDGEMENT

I thank the Director, T. B. R. L., Chandigarh, for providing necessary permission to publish the paper.

REPERENCES

1. Gazley, C., The Rand Corporation Report, Feb. 1957, p. 950.
2. All n, H. J. \& Egarrs, A. J., NACA, TN 4047, Oct. 1957.
3. Eqaers, A. J. \& Allen, H. J., NACA, TN 4046, Oct. 1957.
4. Chappil, D. R., NACA, TN 4276, May 1958.
5. Lor, W. H. T., "Advances in Ballistic Missile and Spaoe Technology", Vol, 1 \& 2, (1980), 382 -398.
6. Loн, W. H. T., AIAA J, 1 April 1063, 836-842.
