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The Laminar flow of an unsteady liquid with uniform distribution of dust particles through a rectangular channel
under.the influence of exponential pressure gradient with respect to time has been investigated. The influence of the
presence of the dust particles on fluid particles is discussed and graphs of velocity profile are drawn.

Michael & Miller! have discussed the motion of dusty gas occupying the semi-infinite space above a
rigid plane boundary. Later Sambasiva Rao? has studied the flow of a dusty viscous liquid through circular
cylinder by taking exponential pressure gradient with respect to time. With similar pressure gradient, we
have investigated the case of a rectangular channel. Analytical expressions for the velocities of fluid and
dust particles are obtained. Graphs of velocity profile are drawn and the influence of the dust partlclek on

fluid particles has been studied.

EQUATIONS OF MOTION

The equations of motion of unsteady viscous liquid with uniform distribution of dust perticles are
givenl3¢ by -

aT? + (' V)a = — “,1? Vpt+vVii o (v—2) o S
B = (a—) 0
div #=0 ‘ ' | | %)
div v=0 - B

where i, v denote the velocity vectors of liquid and dust particles respectively, p the pressure, p the den.
sity of the fluid, » the kinematic coefficient of viscosity, ¢ the time, m the mass of a dust particle, N, th-
number density of dust particles which is a constant throughout the motion, % the Stokes resistance coeffio
cient which for spherical particles of radius @ is 6 7 @ and p the coefficient of viscosity of fluid particles-

FORMULATION AND SOLUTION OF THE PROBLEM

In the present investigation we shall discuss the laminar flow of a viscous liquid, with uniform distri-
- bution of dust particles, through a rectangular channel whose cross section is given by (z2—a?) (y2—b?),
under influence of exponential pressure gradient with respect to time. ,
Choosmg the z-axis along axis of the channel, the components of velocity of fluid and dust partmles are
respectively glven by _
=0,  Uy=0 . (65)]
v, =0, V=0 (6)
where (v, Uy, u;) and (v;, v,, v;) denote the components of fluid and dust partmles respectively. -

Since the motion is assumed to be laminar using the relations (5) and (6), equations of motion can be
written as

1 9p '
0=—-p—'—§- (7)
1
0=— — L
P Y (®)
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"_gf’: =T & + v V23u; (vs — us) 4 9)
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303/ k . ’
S = s — ) | (10)
From (7 ) and (8), it fotlows that ( — —%— ;—f ) is a function of ¢ only. Since 'we have assumed the
pressure gradient is exponentlal we can wntew N L
1 ap e ‘
- o g— A%t (11) |
where o and X'are real constants.
In view of (11), we can express ‘
= @ y)e N \ (12)
- g = w, (7, y) e A » SR (18)
Using an to. (13) in (9) and (10), one obtams respectwely : S
I A2 o '
%A wl + ';';" (Wz — ;) + ""v‘" w, + T & 04 L oo 7 k ‘ (14)
. o o '
| —)\2’0{’2.= T(wz—"wﬁ : . (15)
where
_
TR
ST N.m T L
l - 0 ' - \~
T T, . ) oA
Equation (15) can be written as  ~ : e K
w=wf(le) S (9)
Eliminating w, from (14) and (16) we obtain the follbwing equation” ;
(l+1—c-7)\2) o« (1—1')\2_) » _
Viw 1+ (1—723) [w1+ 2o (41— }50 ()
which can be simphﬁed as | ) ' , Tt
' Pw, | Pw : o R
2 T TRE =0 ‘ (18)
where T e
Q o otb 4(1 ___.,.}2}’
T+ 1= 2
Bg_ )\2 (l-}—l-—‘r)\2) . o

The expression for velocity of the fluid partlcles is obtained if the solution of the d1ﬁerentlal equation
(18) is obtained subject to the following boundary conditions.

w(tag) =0 (—b<y<h) . )
wl(w +8) =0 (——agw\a) LT {20)
Since there is no slip of the fluid. particles on-the walls of the channel. o '
The boundary condition (20) can be satisfied by. takmg wy in the following form

v, (5, 3) = ZF(w (2241 .y | 2
whmh gimplifies the first boundary condmon (19) to s : - o
. F(:I:w) - @)
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Using (21) and taking® @, as

40 O (=17 2n 41
Q= - Z Gnt1) cos8 (’-——Zb» ) Y ’ . (23)
0 L | .

differential equation (18) can be expressed as

d* F 409 B(—1)p
— p2 = — - .
= BT x  (2n+1) 24)
where o ) '
: (27 4 1)? 2?
2 . - B2
P="% B
The general solution of the differential equation (24) is given by ‘ :
_ ) 4 QB (—1)p
F(w)—A‘OOSth-{—BSHIhPQ)—}—m (25)
where 4 and B are arbitrary constants to be determined subject to the boundary conditions (22).
Using the bound‘éry eonditions (22) in (25) one obtains the following values for 4 and B.
|  —sap(p
4= 7 P?(2n +1)cosh Pa (26)
B=0 _ - ‘ o @7
Using the above values of 4 and B, (25) can be expressed as (
L 4Qp (=1 cosh P ) - o
F(2) = = 2n+1) ( " cosh Pa | A (28)_

Which on substitution in (21) yields the following: expression :

4RO O (—1p “cosh Pz |~ ( an+1\
T a Gn TP ( ~ “oosh Pa )" 20 )"i‘/ - (29)
0

w, (‘”: y) =

Using above relation in (16), we obtain

, m .
’ = 4820 =1 cosh Pz : ( 29 4+1 1\
w, (2, y) = 7 (1L — 7 A% (2n +1)P? ( - coshPa,)cos 25 )"3’ (30)
0
Using (29) and (30) in (12) and (13) we obtain resp;ectively the following relations :
: , ‘.4e—*\’tﬁ29‘ - ((—1"‘ _ cosh Pz '2n+1
o (% 9, 1) = — Z (2n—|—%)P2 (1—m)°°s ('—‘é‘b—)"-‘/ (31)
: SR : : g :
o deMg o O (—p coshpm‘) (2n+1’
% @0l = i Gu Tt 1P ( T b Pa ) P\ 205 ‘)"” (32)
Qo

- Relations (31) and (32) express respéétivelj the veloqity of the fluid and dust ‘par’oicles.
Following Drakes® approximation, we shall discuss the case of large values of P.
For large values of P the velocity of fluid and dust particles can be simplified as

4e—Nige 0 =) | ——1)” _ —x . 2n+1 ;
uy (2, 9,8) = "B. ; (2£+1)P2 [l—e a »“’] cos(-.———?g—*—‘)‘wy (33) 
: 0 : S :
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Fig 1—Variation of U with 2z (2=40 to —10) when @ = 40;
b=10,y = + 1 to+5.

de—NtgQ (— 1yr

vs(w’ Y1) = (1 —72%) (2’/&-—]—1)P2
-0

-8
% .

Fig 2—Variation of U with z (¢ = 20 to — 10) when
6=20;b=10,y= 4+ 1to 4 5. )

[l—e“(“—w)P] co’s( 2n 11 )'n'y

T2b (34

From (33) and (34) itis seen that boththe fluid and dust particles which are nearer to the axis of
cylinder, move with the greater velocity. Since =, A2 are positive, the velocity of the dust particles is more
than that of the fluid particles, when the dust is very fine, the relaxation time of dust particles decreases
and ultimately as + - 0 the velocity of dust and fluid particles will be the same.

If the masses of dust particles are small, their influence on the fluid flow is reduced, and in the limit
as m -0 the fluid becomes ordinary viscous, and we get the solution of the laminar flow of a viscous liquid
through rectangular channel under the influence of exponential pressure gradient, with respect to time.

us me’

¢ -
—IFQ by U, (33) can be expressed as

Graphs are drawn between U and o
(i) fora = 40,6 = 10,y = 4-1, 4-2, 43, +4, 45 and  varies from 40 to — 10 (Fig. 1)yand
(if) for @ = 20,b =10,y = +1, 2, 3, 14, L5 and & varies from 20 to — 10 (Fig. 2).

From Fig. 1 and 2 the variation of the velocity of the fluid particles and hence the variation velocity of
the dust particles can be studied. '

Denoting

5 (— 1

(2h+1
RPACEES —2b

2% (35)
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