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The geometry of streamline and magnetic lines'have been conéidere_d to ébudy the{varioﬁs kine;na.ticj and kinetié.
properties of magnetohydrodynamic flows.

. Wasserman! has examined the geometry of streamline and. fieldline congruences; in order to study
the various kinematic properties of magnetohydrodynamic flows. He has alsa precisely shown, to what
extent the geometry of streamlines and fieldlines determine MHD flow. Though his approach has yielded
some new interesting results, but description of geometry seems to be circutous, Consequently herein we
have attempted to deseribe the geometry of streamline and fieldline in a more direct way and applied these
to study the kinematic properties of magnetohydrodynamic flow. Effecting the transformation in intrinsic
form the momentum equations, it is observed that the equation derived by Wasserman® and non-magnetic
flow can be deduced as - a special case from this investigation. Kinetic energy potential is intyoduced
which depends upon the geometry of streamline.only. It is proved that the-mementumi per” unit miass -is
conserved along an individual streamline. Field relations are decomposed ‘n streamline geometry. Irrotational
character of the electric field is expressed in intrinsic form. Introducing the velocity of ‘sound-momentum
relations are decomposed. ‘ e

"BASICEQUATIONS

The basic equations governing steady flow of magnetogasdynamies, in the absence of viscosity,
thermal conductivity and electrical resistance are given below in the usual notation?
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where ¢, p, p, S and (o = ()} H) aze the velocity vector field, the fluid density, the hydrodynamic
pressure, the specific entropy and the magnetio field, and J¢,, Cy, y are the Joule’s constant, the specific
heat at constant volume and the ratio of specific heats at constant pressure and constant volume respectively.
GEOMETRIC RESULTS
- - — e . E
Considering s, » and b as the unit tangent: triply orthogonal vectors to the curves of cong-
ruences formed by the streamlines, their principal normals and binormals respectively and denoting

S8 8. Ui = o >
5 ' sn’ op o intrinsic derivatives along these curves and also selecting, p as the position vectar

an a streamline we have the following results? : :
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where K, 7, and D are the curvature, the torsion and the Darboux vector for the curve having unit
L
tangent vector S (streamline).
- .
In addition to these, we take primary parameters of the streamline (S) geometry, the four variables

Onss Ose ¢ s and 2, defined by Bjgrgum? expression for V4 S as
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From this we can obtain rotatmna,l and div of the vector field S as
curlS—-.QS—}—K.b : S (14)
dle = Op + Oy = J T : - (15)
where J and 2, are the mean curvaturé and the abnorma.hty of the vector S
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‘ Fqlloyving Marris & Passman"’ we have the following geometric results pertaining to the » and b

lines
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where @y = — { 7, + } (¥, — Q )} .Q[, 3 (Yo + Q5) — 74, (En, m) and (K, by,) are the abnormalities |

> - .
the curvature and the binormals for the curves of congruences havmg n and b as the unit tangent
vectors respestively.

Making use of solenoidal property of s, n and b we obtain successively the following
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Usmg the 1rrota.t10nal property of V f, where f (r) is the scalar pomt functlon in space and
equating the corresponding components we obtain the following
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From these we observe that the commutative character of intrinsic derivatives do not hold geod as
in the case of continuous partial derivatives.

INTRINSIC PROPERTIES OF FLOWS

. We transform the basic equations into intrinsie form, using the geometric results of the previous
section pertaining to the spatial streamlines and the fieldlines and study the kinematic and kinetic pro-
perties of the flows described.

- > >
Introducing the triad (s, %, b ) along the lines of force and their principal normals and binormals the
momentum equation (2) can be decomposed into intrinsic from as
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where _:s—, , (@, wn, wp) and (K’ , K',, , K';) are the directional derivative along a magnetic line of force,

the resolutes of magnetic field and the curvature vectors of the lines of force along the streamlines, the
principal normals and binormals respectively. These are the équations of motion in which properties of
the streamlines and fieldlines are distinguished from the other properties of the flow. The equation (26)
has been derived by Wasserman®, Also the equations governing non-magnetic flows can be deduced
from the above. :

Multiplying (1) by ¢ and: 1ntroducmg the kmetlc energy density ¥ = p ¢2 and usmg (15), we obta,m
1 3 X
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- This expresses the mean curvature of the streamline. If the normal congruences of the streamlines are
minimal, (29) yields
'V .

P1= T = | )
where ¢, is constant along a streamhne The physical interpretation of this is the monientum per unit
‘mass of a gas is conserved along an individual streamline if the normal congruences of it form minimals:
This result also hold for non-magnetic flows as well, since this is independent of the field.

Intfoducing the kinetic energy density, the magnetic energy density and the total pressure
2 ‘
@V=pg OF=-—" (©@=p+W (31)

The momentum equation (2) can be written as
- - > - S 2 :
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Now decomposing these into intrinsic form along a streamline, its principal normal and binormal we
obtain
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These are the equations governmg the principle of conservatmn of momentum intrinsic form

Maklng use of the a.bave geom;etrm results, the ﬁeld equa.tmn (3) can be decomposed as,

q (s 0nb + @ Opm) + 8 (q wn) + - Sb (qos) = 0 | (36)
. g (wo Q-+ o, 068) + "38_3‘ {quwa) = 0 _ (37) |
g (@b Ong — on Qb) + 888' (q wp) = 0 o (38) -
Irroi:atmnal character of the electnc ﬁeld yields v ‘
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where B, By and Ej are the resolutes of electric field along a streamhne, its prmc1pal normal and binormal
respectlvely

Intmduomg the veloclty of spund and mach number in contmmty equation (1) can be written as
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.- Also the momentum ‘equ‘atiOn (2) can be writter. as - ,
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These constitute the momentum equations in intrinsic form.

The conservation principle of the magnetic-ﬁeld can be expressed in fieldline and streamline
geometrics respectively as
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