APPLICATION OF E-OPERATOR IN EVALUATING CERTAIN FINITE INTEGRALS

F. SINGH
Government Engineering College, Rewa
(Received 29 April 1971)

In an attempt to unify some earlier results in the theory of the functions of hypergeometric type, the author establishes some new results involving the product of generalized hypergeometric function and H-function.

The object of this paper is to evaluate some finite integrals involving the product of generalized hypergeometric function and H-function with the help of finite difference operator E. As on specializing the parameters the generalized hypergeometric function may be converted into a number of special functions and polynomials, and H-function into G-function and all those functions which can be defined through G-function, the integrals obtained in this paper are of general nature and many interesting particular cases have been obtained some of which are known and others are believed to be new.

Bajpai¹, Chhabra & Singh², Sharma³ and Sharma⁴ have established useful results in the theory of functions of hypergeometric type. The H-function introduced by Fox⁵ is represented and defined as follows:

\[
H^K_{ \frac{p}{q}, \frac{l}{K}} \left[\frac{(a_1, e_1), \ldots, (a_p, e_p)}{(b_1, f_1), \ldots, (b_q, f_q)} \right] = \frac{1}{2\pi i} \int_L \frac{\prod_{j=1}^{K} \Gamma(b_j - f_j S) \prod_{j=1}^{l} \Gamma(1 - a_j + e_j S)}{\prod_{j=K+1}^{q} \Gamma(1 - b_j + f_j S) \prod_{j=l+1}^{p} \Gamma(a_j - e_j S)} x^S dS, \tag{1}
\]

where x is not equal to zero and an empty product is interpreted as unity; p, q, K and l are integers satisfying $1 \leq K \leq q$, $0 \leq l \leq p$, $e_j (j = 1, \ldots, p)$, $f_j (j = 1, \ldots, q)$ are positive numbers and $a_j (j = 1, \ldots, p)$, $b_j (j = 1, \ldots, q)$ are complex numbers. L is a suitable contour of Barnes type such that the poles of $\Gamma(b_j - f_j S)$ $(j = 1, \ldots, K)$ lie to the right and those of $\Gamma(1 - a_j + e_j S)$ $(j = 1, \ldots, l)$ to the left of L. These assumptions for the H-function will be adhered to throughout this paper.

In a more compact form, H-function is represented by

\[
H^K_{ \frac{p}{q}, \frac{l}{K}} \left[\frac{(a_1, e_1), \ldots, (a_p, e_p)}{(b_1, f_1), \ldots, (b_q, f_q)} \right] = (2\pi) \frac{D}{\Pi_{j=1}^{q} f_j^{(b_j - 1)}} \frac{\prod_{j=1}^{p} e_j^{(1 - a_j)}}{\prod_{j=1}^{q} f_j} \frac{\prod_{j=1}^{p} e_j^{(1 - a_j)}}{\prod_{j=1}^{q} f_j} x \sum_{j=1}^{K} f_j \sum_{j=1}^{l} e_j \left(\sum_{j=1}^{p} \frac{e_j^{(1 - a_j)}}{f_j} \right) \left(\sum_{j=1}^{q} \frac{f_j^{(b_j - 1)}}{e_j} \right) \Delta (e_1, a_1), \ldots, \Delta (e_p, a_p) \Delta (f_1, b_1), \ldots, \Delta (f_q, b_q), \tag{2}
\]

where

\[
D = \sum_{j=1}^{K} \frac{1 - f_j}{2} - \sum_{j=K+1}^{q} \frac{1 - f_j}{2} + \sum_{j=1}^{l} \frac{1 - e_j}{2} - \sum_{j=l+1}^{p} \frac{1 - e_j}{2}
\]

and $\Delta (m, a)$ represents a set of m parameters a, $\frac{a+1}{m}$, \ldots, $\frac{a+m-1}{m}$.
According to Braaksma6

\[H_{K, l}^{p, q} \left[x \left| \frac{(a_p, e_p)}{(b_q, f_q)} \right| \right] = 0 \quad (|x|^\alpha) \quad \text{for small } x, \]

where

\[\sum_{j=1}^{p} e_j - \sum_{j=1}^{q} f_j \leq 0 \quad \text{and } \alpha = \min \left(\frac{b_h}{f_h} \right), \quad (h = 1, \ldots, K) \]

and

\[H_{K, l}^{p, q} \left[x \left| \frac{(a_p, e_p)}{(b_q, f_q)} \right| \right] = 0 \quad (|x|^\beta) \quad \text{for large } x, \]

where

\[\sum_{j=1}^{p} e_j - \sum_{j=1}^{q} f_j < 0; \quad \sum_{j=1}^{l} e_j - \sum_{j=1}^{l} e_j + \sum_{j=1}^{K} f_j - \sum_{j=K+1}^{q} f_j \equiv \lambda > 0, \quad |\arg x| < \frac{1}{2} \pi \lambda \]

and \(\beta = \max R \left(\frac{a_j - 1}{e_j} \right) (j = 1, \ldots, l) \).

The following formulae will be used in the present work.

\[
\int_{0}^{t} x^{\rho-1} \left(t - x \right)^{\beta-1} H_{K, l}^{p, q} \left[x z^{m/h} \left| \frac{(a_p, e_p)}{(b_q, f_q)} \right| \right] dx
\]

\[
= (2\pi)^{(1-h)A} \left[\frac{\beta}{A} + 1 \right] \Gamma(b) \left[\frac{K^h}{ph+1, qh+1} \right] \left[\left(1 - \frac{\rho}{\beta}, m \right), \left(\frac{(h, b_q, f_q)}{(h, b_q, f_q)} \right), \left(1 - \frac{\beta}{\beta}, m \right) \right] \ (3)
\]

where \(m \) is a positive number and \(h \) is a positive integer,

\[A = K + l - \frac{p}{2} - \frac{q}{2}, \quad B = \sum_{j=1}^{p} b_j - \sum_{j=1}^{q} a_j + \frac{p}{2} - \frac{q}{2} + 1, \quad \tau = \sum_{j=1}^{p} e_j - \sum_{j=1}^{q} f_j, \left(\left(t, s_i, \gamma_i \right) \right) \text{stands for} \]

\[\left\{ \left(\frac{8r_i}{t}, \gamma_i \right) \right\}, \ldots, \left\{ \left(\frac{8r_i + t - 1}{t}, \gamma_i \right) \right\} \]

and provided that \(R (\beta) > 0, R \left(\frac{\rho}{\beta}, m \right) > 0 \) \((j = 1, \ldots, K)\),

\[
\sum_{j=1}^{k} f_j - \sum_{j=k+1}^{\lambda} f_j + \sum_{j=1}^{l} e_j - \sum_{j=l+1}^{q} e_j \equiv M > 0, \quad \tau < 0 \quad \text{and } |\arg z| < \frac{1}{2} \pi M
\]

\[
\int_{0}^{t} x^{\rho-1} \left(t - x \right)^{\beta-1} H_{K, l}^{p, q} \left[x z^{m/h} \left(t - x \right)^{n/h} \left| \frac{(a_p, e_p)}{(b_q, f_q)} \right| \right] dx
\]

\[
= (2\pi)^{(1-h)A} \left[\frac{\beta}{A} + 1 \right] \Gamma(b) \left[\frac{K^h}{ph+2, qh+1} \right] \left[\left(1 - \frac{\rho}{\beta}, m \right), \left(1 - \frac{\beta}{\beta}, n \right), \left(\frac{(h, b_q, f_q)}{(h, b_q, f_q)} \right), \left(1 - \frac{\beta}{\beta}, m + n \right) \right] \ (4)
\]

provided that \(m \) and \(n \) are positive numbers and \(h \) is a positive integer,

\[R \left(\frac{\rho}{\beta}, m \right) > 0, \quad R \left(\frac{\beta}{\beta}, n \right) > 0 \quad \text{and } |\arg z| < \frac{1}{2} \pi M.
\]

\[
\int_{0}^{t} x^{\rho-1} \left(t - x \right)^{\beta-1} H_{K, l}^{p, q} \left[x z^{m/h} \left(t - x \right)^{-n/h} \left| \frac{(a_p, e_p)}{(b_q, f_q)} \right| \right] dx = \theta, \phi \text{ or } \psi,
\]
According as \(m > n, < n \) or \(n = m \), where

\[
\theta = (2\pi)^{(1-h)A} h B t^\beta - 1 H \frac{K \phi + 1, \lambda \phi + 2}{p^h + 1, q^h + 1} \left[(z h \tau)^h \right]^{-m-n} \]

\[
\left(1 - \sigma, m, \{(\triangle (h, a_p), c_p) \}, (1 - m - n) \right) \in \beta, n, \{(\triangle (h, b_p), f_p) \}\right],
\]

\[
\phi = (2\pi)^{(1-h)A} h B t^\beta - 1 H \frac{K \phi + 1, \lambda \phi + 1}{p^h + 1, q^h + 1} \left[(z h \tau)^h \right]^{-m-n} \left(1 - \sigma, m, \{(\triangle (h, a_p), c_p) \}, (1 - m - n) \right) \in \beta, n, \{(\triangle (h, b_p), f_p) \}\right]
\]

\[
\psi = (2\pi)^{(1-h)A} h B t^\beta - 1 H \frac{K \phi + 1, \lambda \phi + 1}{p^h + 1, q^h + 1} \left[(z h \tau)^h \right]^{-m-n} \left(1 - \sigma, m, \{(\triangle (h, a_p), c_p) \}, (1 - m - n) \right) \in \beta, n, \{(\triangle (h, b_p), f_p) \}\right]
\]

where \(m, n \) are positive numbers and \(h \) is a positive integer and the condition of validity being

\[
R \left(\frac{p_j - (n + 1)}{h} \right) > 0 \quad (j = 1, \ldots, l), R(p + \frac{m \phi}{h \phi}) > 0 \quad (j = 1, \ldots, K), M > 0, \tau < 0 \quad \text{and} \quad \arg z \in \left(-\frac{\pi}{2}, \pi\right).\]

when \(m = n \), \(n \) is to be replaced by \(m \) in the above conditions.

The formulae (3), (4) and (5) can easily be established by replacing the \(H \)-function (with \(h = 1 \)) on the left hand side by its equivalent contour integral as given in (1), changing the order of integrations which is justifiable due to the absolute convergence of the integrals, evaluating the inner integral\(^7\) and applying the multiplication formula for \(H \)-function, viz.

\[
H K, l \left[z x^m / h \right] \left\{ (a_p, c_p) \right\} \right] = (2\pi)^{(1-h)A} h B H \frac{K \phi, \lambda \phi}{p^h, q^h} \left[(z h \tau)^h x^m \right] \left\{ (\triangle (h, a_p), c_p) \right\}. \]

The finite difference operator \(E \) is\(^8\)

\[
E_a f(a) = f(a + 1) \quad (a; n) = \frac{\Gamma(a + 1)}{\Gamma(a)} \quad (7)
\]

We shall now obtain the following formulae:

\[
\int_0^t x^\beta - 1 \cdot (t-x)^\beta - 1 u F_v \left\{ \alpha_1, \ldots, \alpha_u \beta_1, \ldots, \beta_v \right\} G x^\mu (t-x)^\nu \right] d x = (2\pi)^{(1-h)A} h B t^\beta - 1 \sum_{j=1}^u \frac{\Gamma(\beta + \nu \mu)}{\Gamma(\beta + \nu \mu)} \frac{\Gamma(\beta + \nu \mu)}{\Gamma(\beta + \nu \mu)} \right] \]

\[
\int_0^t x^\beta - 1 \cdot (t-x)^\beta - 1 u F_v \left\{ \alpha_1, \ldots, \alpha_u \beta_1, \ldots, \beta_v \right\} G x^\mu (t-x)^\nu \right] d x = (2\pi)^{(1-h)A} h B t^\beta - 1 \sum_{j=1}^u \frac{\Gamma(\beta + \nu \mu)}{\Gamma(\beta + \nu \mu)} \frac{\Gamma(\beta + \nu \mu)}{\Gamma(\beta + \nu \mu)} \right] \]

\[
\left(1 - \sigma, m, \{(\triangle (h, a_p), c_p) \}, (1 - m - n) \right) \in \beta, n, \{(\triangle (h, b_p), f_p) \}\right],
\]

where \(m \) is a positive number, \(h \) is a positive integer, \(\nu \) and \(\mu \) are non-negative integers. The above formula holds if \(u \leq v \) (or \(u = v + 1 \) and \(C \mid < 1 \)), no one of the denominator parameters \(\beta_1, \ldots, \beta_v \) is
zero or a negative integer, \(R(\beta) > 0, R(\rho + \frac{mn_j}{h_f}) > 0 \) (\(j = 1, \ldots, K \)), \(M > 0, \tau \leq 0 \) and \(|\arg z| < \frac{1}{2} \pi M\).

\[
\int_0^t x^{\rho - 1} (t - x)^{\beta - 1} u F_v \left\{ \begin{array}{c} \alpha_1, \ldots, \alpha_u; \\
\beta_1, \ldots, \beta_v; \\
C_{x^v} (t - x)^{\mu} \end{array} \right\} H_{p, q}^{K, l} \frac{\zeta_{x^u/(t - x)^{\mu} / \{(b, f, g)\}}} \] \] dx

= (2\pi)^{k - h} A h B t^{\rho + \beta - 1} \sum_{r=0}^{\infty} \mathcal{F}_{j=1}^n (\alpha_j; r) C^r t^r (v + \mu) .

\[
H_{p, q}^{K, l} \left[\begin{array}{c} [(zh^j)^{h}, m - n] \left\{ (1 - \rho - \nu, m), (1 - \beta - \rho, n), \{(\theta (h, a_p), \phi_p)\} \right\} \\
(\beta + \rho, n), \{(\theta (h, b), f), (1 - \rho - \beta - \nu - \rho, m_n) \right\} .
\] \] \]}

provided that \(m, n \) are positive numbers, \(h \) is a positive integer, \(v \) and \(\mu \) are non-negative integers, \(v < v (v = v + 1) \) and \(C = C \), no one of the denominator parameters \(\beta_1, \ldots, \beta_v \) is zero or a negative integer, \(R(\rho + \frac{mn_j}{h_f}) > 0, R(\beta + \frac{mn_j}{h_f}) > 0 \) (\(j = 1, \ldots, K \)), \(M > 0, \tau \leq 0 \) and \(|\arg z| < \frac{1}{2} \pi M\).

\[
\int_0^t x^{\rho - 1} (t - x)^{\beta - 1} u F_v \left\{ \begin{array}{c} \alpha_1, \ldots, \alpha_u; \\
\beta_1, \ldots, \beta_v; \\
C_{x^v} (t - x)^{\mu} \end{array} \right\} H_{p, q}^{K, l} \frac{\zeta_{x^u/(t - x)^{\mu} / \{(b, f, g)\}}} \] \] dx

= \theta_1, \phi_1 \) or \(\phi_1 \), according as \(m > n, < n, \) or \(= n \), \] \]}

\[
\theta_1 = (2\pi)^{k - h} A h B t^{\rho + \beta - 1} \sum_{r=0}^{\infty} \mathcal{F}_{j=1}^n (\alpha_j; r) C^r t^r (v + \mu) .
\] \]}

\[
\phi_1 = (2\pi)^{k - h} A h B t^{\rho + \beta - 1} \sum_{r=0}^{\infty} \mathcal{F}_{j=1}^n (\alpha_j; r) C^r t^r (v + \mu) .
\] \]}

\[
\phi_1 = (2\pi)^{k - h} A h B t^{\rho + \beta - 1} \sum_{r=0}^{\infty} \mathcal{F}_{j=1}^n (\alpha_j; r) C^r t^r (v + \mu) .
\] \]}

\[
\psi_1 = (2\pi)^{k - h} A h B t^{\rho + \beta - 1} \sum_{r=0}^{\infty} \mathcal{F}_{j=1}^n (\alpha_j; r) C^r t^r (v + \mu) .
\] \]}

\[
\psi_1 = (2\pi)^{k - h} A h B t^{\rho + \beta - 1} \sum_{r=0}^{\infty} \mathcal{F}_{j=1}^n (\alpha_j; r) C^r t^r (v + \mu) .
\] \]}

108
where \(m, n \) are positive numbers, \(h \) is a positive integer and \(\nu \) and \(\mu \) are non-negative integers. The formula (10) exists when \(u < v (u = v + 1) \) and \(|C| < 1 \), no one of \(\beta_1, \ldots, \beta_v \) is zero or a negative integer, \(R \left(\rho + \frac{m^j}{h^j} \right) > 0 \) \((j = 1, \ldots, K)\), \(R \{ \beta + \frac{n}{h^j} (a_j - 1) \} > 0 \) \((j = 1, \ldots, l)\), \(M > 0, \tau < 0 \) and \(\arg z < \frac{1}{2} M \pi \) when \(n = m, n \) is to be replaced by \(m \) in the above conditions.

Proof of Integral (8)—

On multiplying both sides of (3) by \(\prod_{j=1}^{u} \Gamma(\alpha_j + \delta) \) and applying the operators \(e^{E_\rho^\mu E_\beta^\mu E_\delta^\mu} \), we get

\[
\prod_{j=1}^{u} \Gamma(\beta_j + \delta) \left(\begin{array}{c}
\int_0^t x^{\rho - 1} \left(t - x \right)^{\beta - 1} H_{K, l, p, q} \left[z x^{m/h} \left\{ (a_p, e_p) \right\} \right]
\end{array} \right)
\]

\[
= \prod_{j=1}^{u} \Gamma(\beta_j + \delta) \left[(2\pi)^{(1 - h^j)A} h^B t^{\rho + \beta - 1} \right]
\]

Expanding both sides of (11) and using (6), we have

\[
\sum_{r=0}^{\infty} \int_0^t x^{\rho - 1} \left(t - x \right)^{\beta - 1} H_{K, l, p, q} \left[z x^{m/h} \left\{ (a_p, e_p) \right\} \right] \prod_{j=1}^{u} \Gamma(\alpha_j + \delta + r) \left(\begin{array}{c}
\int_0^t (t - x)^r
\end{array} \right)
\]

\[
= (2\pi)^{(1 - h^j)A} h^B \sum_{r=0}^{\infty} \prod_{j=1}^{u} \Gamma(\alpha_j + \delta + r) \left(\begin{array}{c}
(2\pi)^{(1 - h^j)A} h^B
\end{array} \right)
\]

Now using (7), changing the order of summation and integration of the left hand side and replacing \((x_j + \delta) \) by \(\alpha_j \) and \((\beta_j + \delta) \) by \(\beta_j \) we get (8). The change of order of summation and integration involved in the process can be easily justified.

The results (9) and (10) can be established exactly on the same lines using the same multiplier and operators except that the formulae (4) and (5) are used respectively instead of (3).

109
PARTICULAR CASES

(i) Putting \(v = 0 \) in (8), we have

\[
\int_0^\infty (t - x)^{\beta - 1} \eta_1 \left\{ \frac{\alpha_1}{\beta_1}, \ldots, \frac{\alpha_n}{\beta_n} ; C(t - x) \right\} H_{p, q}^{(l)} \left[\begin{array}{c} x^{m/n} \{ \{a_p, e_p\} \} \\ \{ \{b_q, f_q\} \} \end{array} \right] dx
\]

\[
= (2\pi)^{(1 - h)A + B t^2 + \beta - 1} \sum_{r=0}^{\infty} \frac{\prod (\alpha_j; r) \Gamma(\beta + r \mu) C^r t^m}{\prod (\beta_j; r) (r)} .
\]

\[
= H_{p, q}^{(l)} \left[\begin{array}{c} (1 - \rho, m), \{ \{a_p, e_p\} \} \\ \{ \{b_q, f_q\} \} \end{array} \right].
\]

The conditions of validity being the same as given for (8).

(i') Taking \(C = t \), \(v = \mu = 1 \), \(u = 2 \), \(\beta_1 = \beta, \nu = 0 \) in (8), replacing the H-function on the right hand side by its equivalent contour integral as given in (1), then changing the order of summation and integration and evaluating the inner summation with the help of Gauss's theorem, we have

\[
\int_0^\infty (1 - x)^{\beta - 1} \eta_1 \left(\frac{\alpha_1}{\beta_1}, \frac{\alpha_2}{\beta_2} ; 1 - x \right) H_{p, q}^{(l)} \left[\begin{array}{c} x^{m/n} \{ \{a_p, e_p\} \} \\ \{ \{b_q, f_q\} \} \end{array} \right] dx
\]

\[
= (2\pi)^{(1 - h)A + B t^2} \sum_{r=0}^{\infty} \frac{\prod (\alpha_j; r) \Gamma(\beta + r \mu) C^r t^m}{\prod (\beta_j; r) (r)} .
\]

\[
= H_{p, q}^{(l)} \left[\begin{array}{c} (1 - \rho, m), \{ \{a_p, e_p\} \} \\ \{ \{b_q, f_q\} \} \end{array} \right].
\]

provided that \(m \) is positive number, \(h \) is a positive integer, \(R (\rho + \beta - \alpha_1 - \alpha_2) > 0 \), \(R (\beta) > 0 \) and

\[
R \left(\frac{m \beta}{h_2} \right) > 0 \quad (j = 1, \ldots, K), M > 0, \tau < 0 \quad \text{and} \quad \arg \frac{z}{\pi^2} \frac{1}{\pi} M.
\]

(iii) In (8) on using the formula (2), we get a known result recently obtained by Chhabra & Singh\(^2\). Further on taking \(C = v = h = t = v = 1, u = 2, \mu = 0 \), replacing \(\beta \) by \(\beta - 1 \), \(\alpha_1 \) by \(\alpha \), \(\gamma \), \(H \)-function on the right hand side by its equivalent contour integral, then changing the order of summation and integration and using Saalschutz's theorem\(^2\), we obtain result due to Sharma\(^4\).

(iv) Taking \(C = t = v = v = 1, u = 2, \mu = 0 \) in (8) and rearranging the parameters in H-function on the right hand side, we get a result given by Sharma\(^3\).

(v) On taking \(C = t = v = h = v = 1, u = 2, \alpha_1 = \alpha, \alpha_2 = 2 \rho, \beta_1 = \beta + \frac{\alpha}{2} + \frac{1}{2}, n = m, \mu = 0 \) in (9), replacing \(\beta \) by \(\rho \) and \(H \)-function on the right hand side by its equivalent contour integral as given in (1), changing the order of summation and integration and applying the Watson's theorem\(^5\), we obtain

\[
\int_0^1 (1 - x)^{\rho - 1} \eta_1 \left(\frac{\alpha_1}{\beta_1} + \frac{\alpha_2}{\beta_2} + \frac{1}{2} ; x \right) H_{p, q}^{(l)} \left[\begin{array}{c} x^{m/(1 - x)} \{ \{a_p, e_p\} \} \\ \{ \{b_q, f_q\} \} \end{array} \right] dx
\]

\[
= \frac{\sqrt{\pi} \Gamma \left(\rho + \frac{\alpha}{2} + \frac{1}{2} \right) K_{l + 4}^{(l + 4)} \left\{ \left(\begin{array}{c} 1 - \rho, m, \{ \{a_p, e_p\} \} \\ \{ \{b_q, f_q\} \} \end{array} \right) \right. \right. \}
\]

\[
= \frac{\Gamma \left(\rho + \frac{\alpha}{2} + \frac{1}{2} \right) K_{l + 4}^{(l + 4)} \left\{ \left(\begin{array}{c} 1 - \rho, m, \{ \{a_p, e_p\} \} \\ \{ \{b_q, f_q\} \} \right) \right. \right. \}
\]
where m is a positive number, \(R(x) < 1, R\left(\rho + \frac{mb_j}{f_j}\right) > 0 \) \((j = 1, \ldots, K), M > 0, \tau < 0\) and
\[|\arg z| < \frac{1}{2} \pi M. \]

(vi) Setting \(C = t = h = v = v = 1, u = 2, \mu = 0 \) and rearranging the parameters in \(H\)-function on

the right hand side, \((9)\) yields a known result due to Sharma\(^3\). Further using \((2)\) we get another result

given recently by Bajpai\(^3\).

(vii) If we take \(C = t = v = h = 1, \mu = 0, u = 4, v = 3, \alpha_1 = \alpha, \alpha_2 = 1 + \alpha, \alpha_3 = 1 + \alpha - \rho, \)
\(\alpha_4 = v, \beta_1 = \frac{\alpha}{2}, \beta_2 = \rho \) and \(\beta_3 = 1 + \alpha - v \) in \((10)\) (with \(m < n \)), replace \(\beta \) by \(1 + \alpha - 2 \rho, n \) by

\(2 \rho \), \(H\)-function on the right hand side by its equivalent contour integral as given in \((1)\), change the

order of summation and integration and evaluate the inner summation with the help of Dougall's second

theorem\(^9\), we get

\[
\int_0^1 x^\rho - 1 \left(1 - x\right)^{\alpha - 2\rho} \binom{\alpha, 1 + \alpha, 1 + \alpha - \rho, \nu}{\rho, 1 + \alpha - \nu} dx
\]

\[
\frac{\Gamma(\rho) \Gamma(1 + \alpha - \nu)}{\Gamma(1 + \alpha) \Gamma(\rho - \nu)} H_{K, l} \left[\frac{z x^m (1 - x)^{-2m}}{(b_q, f_q)} \right] dx.
\]

\[
= \frac{\Gamma(\rho) \Gamma(1 + \alpha - \nu)}{\Gamma(1 + \alpha) \Gamma(\rho - \nu)} H_{K, l} \left[\frac{1}{p + 3, q + 2} \left[z \left(1 - \rho, m\right), \left(\nu, m\right), \left(\alpha - \nu - \rho, m\right) \right] \right],
\]

provided \(m \) is a positive number, \(R(\nu) < 0, R\left(\rho + \frac{mb_j}{f_j}\right) > 0 \) \((j = 1, \ldots, K), M > 0, \tau < 0\) and \(|\arg z| < \frac{1}{2} \pi M. \)

(viii) On setting \(C = t = v = h = 1, u = 2, \mu = 0 \) and rearranging the parameters in \(H\)-function on the

right hand side, \((10)\) (with \(n = m \)) yields a result obtained by Sharma\(^3\). Further if we apply the formula

\((2)\), we get a next result given by Bajpai\(^3\).

(ix) Lastly with \(C = t = v = h = 1, u = 2, \mu = 0 \), replacing \(\beta \) by \(\gamma - \rho, \alpha_1 \) by \(\alpha, \alpha_2 \) by \(\beta, \beta_1 \)

by \(\gamma \), proceeding on the same lines as in \((vii)\) and evaluating the inner summation with the help of

Gauss's theorem\(^7\), \((10)\) (with \(n = m \) yields

\[
\int_0^1 x^\rho - 1 \left(1 - x\right)^{\alpha - 2\rho} \binom{\alpha, \beta, \gamma}{\gamma, \nu, \gamma - \rho} dx
\]

\[
= \frac{\Gamma(\gamma) \Gamma(\gamma - \rho)}{\Gamma(\beta) \Gamma(\gamma - \alpha)} H_{K, l} \left[\frac{z \left(1 - \rho, m\right), \left(\alpha, m\right), \left(\gamma - \rho, m\right)}{(p + 2, q + 2)} \right],
\]

where \(m \) is a positive number, \(R(\gamma - \alpha - \rho) > 0, R\left(\rho + \frac{mb_j}{f_j}\right) > 0 \) \((j = 1, \ldots, K), M > 0, \tau < 0\) and \(|\arg z| < \frac{1}{2} \pi M. \)

If we use the formula \((2), \(17)\) yields a result obtained by Sharma\(^4\). The results similar to \((13)\) can also

be obtained from \((9)\) and \((10)\) on taking \(\nu = 0 \)

Acknowledgement

The author is thankful to Dr. S. P. Chhabra for his interest during the preparation of this paper.
REFERENCES