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A unified treatment isgiven to the problem of finding minimum total drag bodies—both two-dimensional as well
as axisymmetrio by using Newton-Busemann law under the assumption that the friction coefficient is constant.
Particularcases have been discussed when two of the geometric quantities defining the body have prescribed values,
and the results have been illustrated by means of graphs. In case of two dimensional bodies when the length is
specified and in case of axisymmetric bodies when the surface area is known, the optimum shapes are independent
of the friction coefficient.

Recently Miele! 2 studied the nature of the body shapes— both two dimensional and axisymmetric
—which have minimum pressure drag, using the Newton-Busemann law under various constraints
on the geometrical quantities defining a body, namely length, diameter, enclosed area and moment of inertia
in two dimensional case and length, diameter, surface area, and volume in axisymmetric case. But there exist
practical configurations for which the friction drag has the same order of magnitude as the pressure drag
and as such it is of interest to reinvestigate the minimum drag body problem from the point of view of
minimising the total drag, i.e. sum of pressure drag and friction drag. As Newton-Busemann law is used to
restudy the total minimum drag problem, taking constant friction coefficient and since from the literature
it is known that many problems of optimum shapes admit power law solutions, it is worthwhile to
investigate the existence of particular solutions having the form y=(d/2) (z/l)*, where n is a constant.
A general treatment is gi ven here which holds good, for both two-dimensional and axisymmetrie bodies and
then particular solutions have been deduced under various conditions on the geometrical quantities defining
the body.

FORMULATION OF THE PROBLEM

If g denotes the free stream dynamic pressure; Cf the constant friction coefficient; = the abscissa, ¥’ the
first derivative dy/dz and y” the second derivative d2y/da?; then the general expression for the total drag
may be written as

1 -

4"% = jy“ (y’3+i/f’Ty1+%)dw )
0
where o is a numerical constant, « = 0 for two dimensional bodies and « = 1 for axisymmetric bodies.
In case of two-dimensional bodies the enclosed area 4 and the moment of inertia M are given by
4 1
A=2fyda:, M=2fy2da: (2)
0 0
In case of axisymmetic bodies the surface area S and the volume V are given by
4 4 .
S =2 J ydw, V=mn fy%w . )
0 0 )

From (2) and (3), we observe that we can write
1 l

P = 22® f ydz, @ =2x* f y*dw ' ' (4)
0 ] .
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where

When « = 0 (two-dimensional bodies)

oow |

P=3

and

Q =2V
Now we restrict ourselves to the study of the shapes of the form
| y = @[2) (=" ()
where d is the dlameter 1-the length of the body and m is a constant to be d‘tormmed for the minimum

drag body under various snuatlons Thls equa,tion clearly satxshes the boundary conditions of the problem

}, ' ﬂWhen o =1 (axiéymmetric bodies)

xozyo_Oandmf_l Yy = df2

SOLUTION OF THE PROBLEM
From (1), (4) and (5), we obtain

a+3 at+3 a

€

D ay 1 n3 d 1 n2(n—1) Cr (4 !
iy = (”é‘) T e + 30 —2) T (”2") T (ratin D)t T 2 (?) maty © ©
a® dl
CERY "
d\2 2721
0= (% ) @+ ®

Now in what follows we examine different class of minimum drag bodies under various given conditions.
The quantities which define a body arel, d, n, Pand Q.. These are five quantities and there are three equa-
tions (B), (7) and (8) connecting them and hence we have two quantities at our disposal to choose in
advanee and thus find the remaining three in such a way that the body may have minimum total drag.

We have to ensure that the value of # should be such that it does not make the pressure drag { represented
by the first term on the right hand side of (6)} nega,bwe and this requires that

9
n > «+ 3
From (6), (7) and (8), it is obvious that for two-dimensional bodies, if the length is préscribed and for
three dimensional bodies, if the surface area is prescribed then the optimum body profile is independent of
the friction drag.

With the aid of the previous relationships, the optimum shapes can be determined for various
combinations of the conditions on I, d, P and . The- calculation of these shapes for several such
combinations is niow undertaken.

In what follows the drag coefficient Cp is defined as

. Oy = @) " (Djng) .
Example 1—Given the diameter d and the length I.
From (6) the drag is given by
at+3 . N a
D _ _‘Z) 1 Wt _—n +9_f(i) b 9
iy —\2 B (e Fm—2 @ty 2 \2) (+D) ©
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In order that drag be minimum dD/dn =0, i.e.
2n3 (o2 + 5 o + 6) —n2 (7 o + 15) 4 4n 40 (i 3 o
(@ F 1) (na+3n—2p - d) (nac + 12

This determines the optimum value of n to 'give the required shape of the body.

—~0 | (10)

Again the drag coefficient may be written as i
2 3 2 '
CD=(£‘;_) W (12— +40,«( )——L— =0 (11)

(o T 3n— 2) (oc +2) (na + 1)
Case (a) : when a =0 (Two-dlmensnonal ‘body)

In this case from (10), we obtain n = 0-8644. Knowmg the value of », we can obtaln from (7), (8) and (11)
the following quantities

Enclosed Area A = dlf(n +1)
Moment of Inerti M = L
oment of Inertia =7 @n¥)
.. ne (2n — 1 l
Drag Coefficient Cp = Bn— 2)) ( ) + 4C; (—l_l-)

Fig. 1 illustrates relatloqshlp n (d/l) and Cp ( d/l for vanouq values of Of

Case (b): when o = 1 (Axisymmetric body)
In this case the value of # is given by the relation

(1208 — 1102 + 2m) (n -+ 1)2 — 16 O (/d)> (20 — 1)2 = 0 i (12)

Also from (7), (8) and (11), the following quantities are obtained . ;

Surface Area » 8 = adl/(n 1) ‘ B

B nd? l
YVolume = T (m)
] n2(3n—1)»(“) (l 1

Drag Coeﬁidlent O[; == I_(—Z—;b_——l)_ ( I + 40 f ) (n + 1)

Fig. 2 gives the relationships n (d/l) and O (4/1) for given values of Cf.
1.Or -5

--------------- R "‘]i |X_Q“_{" cplaiy — 20
61 cpldit) — " IRPIATe nd Ly ---
iy --- t

6 3

F o
v

4 2

Fid 1

0.4 -é . |:2 ':6 2 oo 0.6.4 .j; l-z 1:6 - 2.80

darnl : dit
Fig. 1—n and Op versus d/1 for given values of Of Fig. 2—nand Cp versus d/! for given values of Gf

‘ {Two-dimensional body) (Three-dimensional body)
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Example 2—Given the diameter d and the value of P.
The following values of I and @ are obtained from (7) and (8) in terms of #, d and P:
P(n41) 0— 4 P41
2d YT % @+
Therefore from (6) we deduce that -

D d\e+3 /d\2 n3(oc+2)—nz - .Of d \e p
fmig =™ (?) (’15') mFLE(natdn—2)(atl) T 2 (?) Q = (na + 1) 49

l = (13)

In order that drag be minimum dD/dn = 0, i.e.

n8 (202 + 9o + 11) — 22 (T + 15) + 4n P8 (o — 1)

CH) P aton—zp U s ~° 0
Also )
P e 2)— P(n + 1)
o= —p (no 430 —2) (« 1) (n + 1)2 +40y (na + 1) @@ #% (16)
Case (@) : when o = 0 (Two-dimensional body) '
In this case the optimum value of # is given by .
11n® — 1502 - 4n + 4Cf (n + 1) (3n — 2)2 (4/d2)® = 0 1n
Also from (13) and (16), we have the values of the following quantities :
1 ’\\
Length l = 4 ;— )
. i AW+ |
Moment of Inertia M= 5 —(m
2 (2n—1 4
Drag Coefficient Cp= zn n—1) +4C; (0 +1) ra
(ﬁ) (n+41)2 (30— 2)

Fig. 3 represents the relationships n (4/d?) and Cp (4/d2) for given values of C.
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Fig. 3—n and Op versus 4/d? for known values of ¢ s Fig. 4—n and CD versus S/d? for known values of Cf
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Case (b) : when « =1 (Axisymmetric body)
In this case from (15) we obtain # = 0-7611. Also from (13) and (16), we have

Length -2 (7:,;_ 2 -
Sd (n 4+ 1)
Volume V= m
. ' w22 (3n — 1) 40; (8
Drag Coefficient Cp 4(S/d2)2 @n—1) (1t | 4+ —= - (d2)

The relation Cp (S/d?) and n (8/d2) are drawn in Fig. 4 for given values of C;.
Example 3—Given the lengthland the value of P.

In this case, we can obtain from (7) and (8) the following va]ues of the unknown quantities d and @ in
terms of I, P and » :

P (n+4-1) P2(n 4+ 1)2
4= —ar 0= sEm@nt ) (18)
Also from (6) and (18), the drag is given by
; 648 a4l : . a a
_D _(_1‘3_) (1) {m(e+f—nt; O (_P_) (n1) o
4atq — \22% (an +3n—2) (@+1) T 2 e ) T=1 (19)
For drag to be minimum dDjdn = 0, Le. -
18 (63410 0331 0-+-80) 18 (- 18 o-4-24) —5 72 (o+-1) 4 440 (¢ —1) mo B 4
(a+1)(ne+3n—2) ! (n at1) (1P~ 0 (20)
Also the drag coefficient is expressed by
P (n4-1)2 {08 (a--2) —n2} nt [2 .
Cp = @4 (noat-3n—2) (a--1) +40; P (na+1) (n41) (21)

Case (a) : when o = 0 (Two-dimensional body)

In this case the optimum body proﬁle is obtained for n=0- 8000 ‘Also from (18) and (21) the values of the
following quantities are known.

Diameter d = -’_1("1_-1-1)
.o o A2 (n 4+ 1)2
Moment of Inertia M = m
Y] 2
Drag Coefficient Cp == " (22-_1)(n+1) + 4(}!15 ,__1__
12 4 (n+1)
Vi (3n — 2) .

Fig. 5 represents the relationships Cp (12/4) and » (12/4) for different valyes of Cy.
Case (b) : when o =1 (Axisymmetric body)

Here the optimum value of » = 0-6056. Also from (18) and (21), we obtain
8nt1y

Diameter d =
T
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82 (n+1)
4l (2n+1)

: n? (3n—1) (n4-1)? & 1
Drag Coeflicient Cp = iz (lz/S)Z) (2:;}) + 4xC; ( S) (nF1)

Fig. 6 shows the relationships Cp (1/8) and n (1?/S) for specified values of 0.

Volume V= —

E’:z:ample 4—Given the diameter d and the value of @.

From (7) and ( 8) we deduce the following value of { and P in terms of n and the two given qua,ntltles d and

Qas

i 20 (2n+1) ‘ 2Q (2n4—1)
b= —mg = "aan @)

Therefore from (6), we obtain
D 40+ 7m0 73 (a4-2)—n? 0 «*-2Q (2n+ @nt+1)
dndg T 2EF5QP “(2nf1)2 (not3n—2) (a+1) T e (rat1)

For the drag to be minimum dD[dn=0, i.e. : o
243 (244 a+5) — n? (Ta416) 4 4n 7 @3 _fle—2) 0 (23)

foet1) (204-1)3 (na-3n—2)2 —320; B X (et 1)
Here the drag coefficient is éxpressed by '
- m2ags n3 (a+2) —n? Q. (@n+1)
Cp T AR X o3 n—2)(ai1) (2nf 1. o+ 8Cs g «d (na+1) (24)

Case (a) : when a=0 (Two-dimensional body) ’
In this case the optimum value of  is obtained from R

103 — 1612 4 4n + 640 (20 4+ 1) (3n — 22 (M/d3F = 0 o (25)

) cglz/s) —_ ¢
ne¢drs ) ---

o .
5 1O 1+5 2.0 2 ?
t?/a ,
Fig. 5—n and O versus 12/4 for given values of Of Fig. 6—n and Op versus§2/.8 for given value of C,
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After haviﬂg calculated the value of n, we can calculate the following quantities

‘ 2n-4+1
’Enclosed Area A= —2%!-((;_%*_%

n2 (2n — 1)

2 e
E"'—) (2n +1)2(3n—2)

Drag Coefficient «0p = —77 + 8Cr(2n +-1) (—dﬂg—)

- 4 (
The relations n(M/d%) and Op (M/d?) for knowa values of Cy are illustrated in’Fig 7
Case (b): ‘when =1 (Axisymmetric body)

In this case the required value of optimum % is given by

n(n + 12 (10n*—11n - 2)m34-1024C; (2n + 1% (2a—12 (V/d%)® = 0 ~ (26)

Knowing n we can easily calculate the following quantities i

27(2 :
Length . l = 1(1—7%—*——1)

: 4V (2n+1)
Surface Area S = —— ()
) _ n? (3n—1) =2 (2 nt1) f},\

Drag Coefficient Cp = GL (VI (@n—T) @I + 16 Cf. Ttl) @

N
b

AN

Fig. 8 gives the relationships n(V /d?) and Cp (V[d?) for given values of Cj.

Example 5—Given the length [ and the value of @. Making use of (7) and (8) the valuéé\(if d and P
in terms of n and the given quantities [ and @ are

d___2[Qf%::{1) ]%’ p_ 2 [Q(Zm:i—l) ]ﬁ | .

G (27)

-
vid?®

Fig. T—n and O, versus M, |d? for various values of C s Fig. 8—n and C p versus V/d? for various value of Of
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With the aid of (6), we obtain

a3 - a .
D  [Q@2a+1)12 1 nd(a}2)—m? oy [ Q(@2n+1) 1F 1
dn% 2[ 27% ] B (na + 3n—2) (a+1) Y 27% ] (nat1)

If the drag is to be minimum, dD/drn=0, i.e.

n4 (a3-4-1202 -4104-42) —n?® (024200 + 39) — n2 (Ba +1) + 4n
(x+1) (na+3n—2)2 '

o WP PR na (2—0) |
2 [ 0 @+D ] - Twarr =0 28)
Also the drag coefficient is given by _
29 @ntl A —n . 2C [ 298
Op = Frz=sis )

7% 3 (nee+3n—2) (1) (no--1)

Case (a) : when « = 0 (Two-dimensional body)

From (28) we deduce that n=0-8141. It is now easy to calculate from (27) and (29) the following quantities
for the optimum body

1/2
Diameter d = [LM_(?L'Hl_] /
« 1 2M  (2n--1) Y2 \ oo
Enclosed Area 4 = D) [ — ]

M (2n—1) (2n-+1) Y
w @y Ty “HEA

The relationships Oy (I3/M) and n(I8/M) are in Fig. 9.

Drag Coefficient 0p =

Case (b) : when =1 (Axisymmetric body)

+Or .0 CD(GIV) [ 12

cp Bty —— ,
nelBivye-=.

nBrmy ----

.5 1 . , " 3. | N b o]
5 ) i5 20 25" "57 . 0 12 16
‘ B3/m Siv
Fig. 9—n and Oy versus I3/ M for known values of ¢ ' Fig. 10— and C'f; versus 13/V for known valtues of C’f
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From (28) we deduce that the required value of the exponent » for the minimum drag body is given by

(2n+41)3/2 (n+1)? (48 n%—30 n2—3 n+4-2) —2x312 Oy (2n—1)% (B[V)3/2 = 0 (30)
Having calculated the value of 7, we can calculate the following quantities for the optimum body
Diameter d =" [—4 Ve 72+1) ]* |

T
Sufaco Aren S =~ 42172 y !
urface Area =~ D) 7l V( n+)]

. _ m® (2 n1) (3 n—1) 205 o B

Drag Coefficient €0 = —ga—n @7+ wth) Vg 7

The relationships # (13/V) and Op (/V) for the known values of C are shown in Fig. 10.
Ezample 6: Given the values'of P and . B

In this case making use of (7) and (8) the unknown quantities [ and din terms of nand the known quantities
P and Q may be deduced as

P2 (n+1)° 2@ (2nt1)

= Z@g@tn '* =P @) (31)
Making use of (6), we have
a+b © a+5 ) a—1 ) N 2—a:
D 4Q x (41 {n(af2)—n% G @ (n+1)
% at7 at7 + 3 e I—a]
P (r+1)  (na+3n—2) (x-+1) P 79%2n-1) (n{x+1)
For drag to be minimum dD/dn=0,1.e.
nt (3414024490 +52) —n8 (a2+2Ta+54) —n? (Ba —3) -+4n
(o +1) (nc4-3n—2)2
C;  PP(n+4-1){3na — 2n—na?) 0 :
T 16 P 2n F 1 (na 1 (32)
Here the drag coefficient of the body is given by
0,  18@m @il {nSatd)—nt} |, PO (n+1p
1= " aipmatan—a)at) T Y@ T (watl) @atip (33)
Case (a) : when « = 0 (Two-dimensional body) |
In this case the relation (32) reduces to
8 (2n+4-1)% (5203 —54n24-3n+-4) + Cy(n+1)° (3n — 2)2 (48] M2 = (34)

This gives the requn'ed value of n . Having known n we can obtain the following quantities of the optimum
body.

Ld

A2 (1)
. 2 M (2n-41)
Diameter d = W]T
1672 (2n 4+ 1)2(2n —1) (n—l—]) A3
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Fig. 11—n and Cp versus 43/ M2 for given values of Cf Fig. 12—n and Op versus 3/ V2 for given values of C’f

The relationships n (43/M2) and Cp (43/M2) for known values of C; are illustrated in Fig. 11.
Case (b) : when o =1 (Axisymmetric body). : T

In this.case from (32), we see that # = 0-6523. We can therefore obtain the following quantities of the
optimum body. - ' o ’ Y

engt, 82 (n+4-1)2
L "k b= 47V (2n-+1)
" 4V (2n4-1)
Diameter . d = W |
. _ 84a? (204 1)4n2 (3n—1) Cr 82 (n41y? ,
Drog coeficiont  Cb = (eypap(uiTpan—1) T &r V¢ GatlF |

Fig. 12 represents the relationship Cp (S%/V2) and n (82/V?) for given values of Cf.
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