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A s>lution of the problem is given when a circular part of non-homogeneous semi-infinite medivm is subject to
axisymmetric twisting dsformation. The results for the homogeneous isotropic case are a particular case of the
problem.

The standard Reissner Sagoci problem' is that of determining the components of stress and displacement
in the interior of a semi-infinite elastic solid #z - 0 when a circular area 0 < 7 << @ of the boundary surface
z = 0 is forced to rotate through an angle ¥ about an axis normal to the undeformed plane surface of the
solid. It is assumed that the part of the boundary surface lying outside the circle is stress free. Reissner &
Sagocit employed a system of oblate spheroidal coordinates. The same problem was also approached by
Sneddon?? via the Hankel Transforms. The main object of this paperis to generalize the standard Re'ssner-
Sagoci problem by taking a non-homogeneous semi-infinite medium. Due to the medium being non-homo.

geneous, we take shear modulus as % » Where is a constant and « << 0. We reduce the problem to

dual integral equations. These integral equations are solved by the method based upon the work of
Copson* (which is an extension of the work by SneddonS. This enables us to derive the simple expressions
for the physical quantities.

PROBLEM, FUNDAMENTAL EQUATION AND BOUNDARY CONDITIONS

We use cylindrical coordinates (7, 6, z), the displacement vector has only one non-vanishing component
ug (7, 2) and the stress tensor has only two non-vanishing components org (7, 2) and ogz (7, 2): The strees -
strain relations reduce to simple equations. :

' oy, Y, o .
Org(f;z)=i"(‘270—_,rg“) ‘ , (1)
Uy ‘
9, (r,2) = u 5 (2)
We suppose that the rigidity of the solid is given by
p=—1r,a<0, (3)
where p, and o are constants. Then, 7
. ' B ~u ug \
org (r,9) = o ( o _ ) , "
Bo Ouy :
o6z (1, 2) = - (5)
Two equations of equilibrium are satisfied identically and the remaining one reduces to
9% ug (1—a) ouy (@—1) Py
ar? + 7 ar + 72 uo- + A 0 (6)

When a circular part (0 < # < @, z = 0) of a non-homogeneous semi-infinite solid is forced to rotate with
prescribed, tangential displacement, it is assumed that the part of the boundary surface which lies outside
the circular part is stress free. Due to these facts we have following boundary conditions :
w0 =f() . O<r<a (7
a2 (r,0) =0 : r> a. (8)
042, Up, ogr, all tend to zero as (12 + 22) - oo, and f (r) is prescribed function.
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SOLUTION OF THE PROBLEM
Now we take the suitable solution of (6) in the form

L g (n ) =B [y (§) et £ ] 9)
where /
- _ V=5 (2—a; (10
and the operator Ho is defined by |
CHo[¢(¢,2),¢>r] = f Etﬁ (é,2)Jo(eryde (11)
X ' \ ‘ 0
We have
Coplr,7) = fs;)z Ho[y (&) etz & > 1] | (12)

The boundary conditions (7), and (8) reduce to dual integral equations

B[y, e>r1 = L0 0<rzg, Sy
Ho[$(e) ¢ >r]=0, r>a : : ;)

We shall express ¢ (£) in terms of an unknown function g (t) through the equation

¢ (&) = (—"2i )iftw—” 9O Jo_1pléyd . .- (15)

Now

a

Hv[¢(£),'£»r]=\/2z fy(t)ﬁﬂ—”dt f &2 Jo (£r) ¥ Jy— 2 (8t) 42
0 _ 0 ..

- 4 : ©
=—rv—1 \/—’21- fg(t) /20 dt 33; yl—v f§1/2 Jo—1(€r) * Jy_1y2 (ét) d¢ (16)
2 (. ' 0

and mak'mg use of the integral

o0 N

£t) -
ffl/2 Jv——;"( J,,_l(f'r) df: V__?;_ tl/g—'”‘fv-—-l'(tz__rz)_ljgH(t_r) . (17)
0 b .

where H (¢—7) denotes Heavy-side’s unit function (which can be easily obtain®dd from Erdelyi®), we see - -
that the equation (14) is automatically satisfied, whatever may be the form of g(f). On wsing (17), we
can easily get from (16) the following : _ ‘ .

a

- 2 — 2 d ’
Ho [4(8), ¢ >r]= —r—1 %f—t*(,z_——%()%)—t- o<r<a 18)

4
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Putting the value of ¢ (¢) from (15) in (13) and making use of integral®, we obtain

@

b Jo (¢r) Joge €D de = o [2 r—viv—d(2—2)- V2 H (r—t (19)
i Jo (er) Jump©? - ) ~)
J ,
v o
t g(t)dt
we get f (7'3—()&25*— =f »(1') rv-—9o/2 (20)
3 ‘
The equation (20) is Abel type, which is easily_solved to give
t
2 2 - dr
g(t);ng{f(f).r”—aIZ}. m (21)
i — :
We can easily show
. a
. tg(t)dt
miey @ ion=r [ 9 < @)
0

Using (12) and, (18) we get

s
a1 9 tZ—ng(t)dt
0, (1, 0) = po v —%2 g TE—m a>r
r

(23)

Similarly, from the equations (9) and (22), we deduce

a
: : o tg(t)dt Y

(ug), o =122"" —_—(rz—ta)i a<<r (34)
0

The torque 7T required to produce the rotation is
a
PT=—2n f r2 (Coz)z_—;o dr ' (25)
0o o :

Substituting the value (%4z); =0 from (23) in (25) and integrating by parts and then changing the order
of integrations, we get

o P (o + 1 — )1 (LU EL ) @ ' |
T = 'v-—-o(,/2 +2 J‘ tz-—v—alzg (t) dt (26)
=t

The solution of (20) can be written as

ENE f(r)rv—-a/zﬂdr

g = - @ —ryp - @7
Substituting (27) in (26) and integrating by parbs, wo geb
v—af2 41
r_ 24/ 7 (v+1—oc/2)I’(——2———)M0 ol f(,.),.v—a/z+1d,.
= . |ty ai2
( v—af2 + 2 ) [ f pym—
r|(—X"
2
a s ( l
. flr)yrr—¢e2+1dy
(l—v——)ft “lzdtf ) @ = ] (28)
0
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1f we take « = 0, then v = 1 we get the expressmn for torque in the homogeneotis case

. 24 |
S r=8 (; Sf) '72)’; i | @9

The above expression is the same as denved by Sneddon2 The expression (28) can be written in terms of
mcomplete beta funcuion. ‘ y v

At (01— af2) T (":%2—*;1)% [

a
| C o ap (SO
T= ('v_a/z+.2<)-'» A R e e
r(1=eEs | ol |
LT} ff(,),l_aB ,,,a,(_;_,_g.+__z)dr], (30)
whqre T ¥
B, (p, ) =ful’—1(1-u)“"1du Re[p]>0, Re[g]>0 D).
0o | SRR |

B, (p, q) is incomplete beta function., C- - *\ |
We have ; e LT -

(08 = BT ['m - fw 48 J, (gr)dgl}
A

. a
, m Bo 3 I —
.- - 0

: f <V§>'i'/2 Jv_l,g (e 7. (e de | @

Making the use of (19), we can write (32) in the f@rm

r

1 gy

R e
. Orp ('If, 0)-:‘— T :-a—r,[7‘”.{_1_@/2 (72_. iz)T] 0 <<r<<a (3?)
. . o 0 - )
iy
Ko J 1 tg t) dt .
= =15y [ A 1l-ai2 (r* — 12yt a<r.
o 5 P

The value of git) is known from (21).

PARTICULAR CASE-

To illustrate the use of these formulae we conSIdeT the speclal ocase Th whgch flr)y =7r. Ttis
easﬂy shown from (21) that ‘ .

g(t) = V7 - F (_”_:“_/%ﬁ.) : (v—ja/2+1)> 0 (34)
R S — | - i r
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Using (24) and (34), we have

v—af2 41 —v, ‘ :
7(1)—-0(/2-}-1)11(———2'—)7“/2 e a2+ 1 B .
f a<r  (35)

('uo)z=0 =

v ( -—océz + 2 ) (r2 —2)t
(35) can be_writtén in terms of incompleté'betadf\_mction a8 .
y(v—a/2+1ff(£:—°c£2——{_i) , v« 1
(ug)z=0 = o 1‘( “/; 3 ) ;'Ba”lr“ (—2~;T+ 1, —5)
a<r, (v—af24+1) >0 '(36)/’
From (34) and (23) wo find thaty *® o o
Yoo (0 —af2 + 1) T (tiz—tl) e
(ope)e~0 = : v__a/2+22 —2 po1-ap %ff(ta__———':g—:i r<a (37) -
The above expression can be written in the form: . »
. yito (0 — a2 +1) T (———i‘%z-ﬂ) o - a | ,
e ey e R
.‘[- ————Uzlhv;;f 4+ (1 —v— oc/2)f t—(t::t/:)Tdt—] 1< @)

(38) can be written in terms of mcomplete beta functlan as : SR
yHo(0—of2 +1)T (——a/ii}—) a2
| \/71”‘1"( ‘-aéz +2 )
T ogl—v—a2 (1__,.0___“/2) 1 w» o
| S b (£ 2 )]
: S - (v—a/2 +1)>0, (39)

(o) =0 =

If we take « = 0, v =1 then from (38) we find that

—4
(00:4)2—0 = "—(“2%;;)? - o (ffo)

_ Clearly (40) is in agreement with Sneddon?
From (34) and (26), we have .

(2 1= )] [P (=25
T

(v—of2 +1) >0 (41

T =
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Using (33) and (34), we can easily show that
(Gro),z:():o ' . : O<r<a

' —af2 41 a
PéoV(v—-oc/2+l)l’( v “é ) [ ot ) .t an P2t iy
= - el ey

Ve () | o=

a
i [ PR | .
—r P —apr_ |, r>a;(v—af2+1)>0 (42)
We find that
a a
w—a/2+idg a’— @/2 o pr—a2—14; ) 4
(7.2 — t2)3[2 = (72 ____ ag)* — (’v —_ —2— )f —{r—a;-—té)*—— - ) ( 3)

With the help of (42) and (43) we get

—af2 41 .
I-‘oy(""‘“/2+1)r('%+_) = a2l gy

[ (v +1—af2)r—o—2+al _(”_“’TZ)* —

( L= s
\\Uro)z=0 VT W—]I’( v-—a;2 +2 )
a’+ a2 t"‘“/2‘1dt
y—vtap e oc/2)f E—E } ],
r>a;(v—af24+1)>0 (44)

(44) can be written in terms of incomplete beta function as

v—af24+1
po? (v—af2 +1) T (—T") [__ (v+1—af2)
N Tty (__”““é2+2 ) C 2
r— vt a2 g?—a? ¥ —0f2 . v « 1
T = +( 2 )B“/’Z(Jr'““‘ff’ 7).
- (v—af24+1)>0;7r>0a (46)

At the end, I have pointed out that if we take« = 0, we get the results of the Reissner-Sagoci problem
for a humogeneous material. All these results® are a particular case of this problem. :

wie (15— s) -

(O’O)z‘ =0
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