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, Assunling the occurrence of a bormdzry shock wave as postulated by Martin, this paper studies its structure in 
conducting gas in the presence of a magnetic field. 

Martin1 postulated the concept of a boundary shock wave, a thin viscous region dominated by viscous 
compressive stress (rather than viscous shear) and the associated heat conduction in the gas adjacent to 
the body surface. He discussed the occurrence of boundary shock waves, developed the general theory for 
one dimensional laminar steady flow through a boundary shock in a perfect gas with longitudina* 
Prltndtl number equal to unity. He' also obtained explicit expressions for the jump conditions, the 
heat conduction co-efficient at the wall and the structure or variation of quantities through the boundary 
shosk. From arguments similar to those given by Martin, Verma & Prasad2, presumed the occurrence of 
boundary shock wave in a conducting gas in the presence of a magnetic field and extended the remilts of 
Martin to obtain the analogues of the well known Rankine Hugoniot jump relations, Pralzdtl numbep as 
well as other properties of the boundary shock. In this note, our purpose is to obtain the structure of a boun- 
dary shock wave in a conducting gas. 

B A S I C  E Q U A T I O N S  

The equations for conservation of mass, momentum, field and energy in one-dimensional steady flow 
in a non-accelerating GO-ordinate system are ua 

and 

where x is the distance to the right of the boundary, e is the internal energy per unit mass, H is the intensity 
of the magnetic field, and f is the sum of the surface forces in the x-direction on an element of mass and is 

- given by, 

where p is the shear viscosity coefficient and p, is the magnetic permeability. Also, 

k being the coefficient of thermal conductivity. 

The boundary conditions at x = xbl= Ot , are, 



and at x+ 00, 

On integration the equations (1) to (4) give 
p u = Constant. 

' and u H = Constant. 

p u (e + & us) + q - u f = Constant. 

S T R U C T U R E  O F A B O U N D A R Y S H O C K  

The differential equatians (1) to (4) and the b a u n d q  canditions (8) and (9) may be put in terms of two 
variables u rwzd T. Then it is convenient to make the equations dimensianless by defining and substituting 
the dependent variables, 

and a new independent variable . 

dzc 
5 = PbU) j-7 

With the assumption, Fr = constant, i; is proportional to b, since cp is constant. Then from (11) a d  (13), 
we have . 

and the boundary canditions, 

d T  
5--3-00: - dli 

d5 
- - t o ,  - 

d l  
--+ 0. 

where in deriving (17) we have assumed that 

In the special case where we have considered 7, = 1, it is caavenient to define, 

so that rn 
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the equatian (17) can be written as, 

d Q  where by dehitian, Q = 0, at 6 = 0 and fmm the boundary ccmditians (18), - 
J t  

-t 0 as6 -too. The 

only passible salution is, obviously, 

Hence (20) to (22) give 

q = UT (25) 
Equatian (16) then becomes, 

dii - R S 
d t  

= p i i - Q + ~ + ~ .  
u 

where by definition, 

1 Y - 1  1 

R = -- 
y - 1  Mba 

1 +  - --- 
2 M ~ H ~  

and 

Far integrating (26) we put it in the fallowing fm 

S iia dii 
(+ el) ( a  - e,) (o - e,) = 

+Conr;tant. 

if the roots of 

- 

are all r e d  In oase one root of (34) ia real and other two me coqlex, (26) can be written as 

iia d 4  $ ( G + a r + p ) ( ~ - ~ )  = P d + Constant. 
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TABLE 1 

VALUER OF P -, ;ii, 5 COBRESPONDING TO REPRESENTATIVE 

VALUES OF ; 

- - 
I u P P 

F 1.0 1.0 1.0 1.0 
Fig. 1-Variation of pressure density, temperature and velo- 

city within s boundary shock for y = 513, 1, 
C h , = t ;  M H ~ =  l o ;  p,= 1. 

The form (35) is however not admissible in the physical problem we are encountered withbkcauae the value 
of a cannot be complex, it being the ratio between the velocities in front and behind the boundary shook. 
Then, integrating (33) in the usual manner and applying the condition (27) we have 

In order to have a qualitative if theL(%),-we take 

and substitute them in the relations (29) to (32) to obtain-values of P, Q, R and S. Then (34) becomes 

Solving the equation numerically, its roots come out to be approximately .6,1.7 and -406. The equation 
(36) then gives 

( y 4 . 6  )-'(4 ( C + 6 3 ( GI -1; 7 
= e'85 

- 1.006 (38) 

Evidently when a = 1 ; 5 + 0 and when 12 = '6, 5 + m. For values of u' between 1 and -6, 4 takes steadily 
large values. There is no need of finding the values of 5 corresponding to ti greater than 1 and negative 
values of a since they are inconsistant with the physioal problem under consideration. Keeping 
in mind that 

the corresponding values of j , T and 3 are given in the Table 1 and the variations of these quantities 
with 6 are plotted in the Fig. 1. 
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