
Def Sci J, Vol 31, No. 4, October 1981, pp 31 5-322 

Magneto Hydrodynamic Flow of a Viscous Incompressible Fluid 
Between a Parallel Flat Wall and aJ Long Wavy Wall 

Department of Applied Mathematics, 
Sri Venkateswara University, Tirupati-517502 

Received 30 July 1980 

Abstract. Magneto-hydrodynamic flow of a viscous incompressible slightly conducting 
fluid between a parallel flat wall and a long wavy wall has been studied. The velocity 
distribution, the coefficient of skin friction and temperature distribution has been 
evaluated. The effects of magnetic, suction and frequency parameters are investigated 
on velocity, the coefficient of skin friction and temperature distribution. 

1. Introduction 

Viscous fluid flow over a wavy wall has attracted the attention of relatively few 
rzsearchers although the analysis of such flows finds application in such different areas 
as transpiration cooling of re-entry vehicles and rocket boosters, cross hatching on 
ablative surfaces and film vapourization in cumbustion chambers. Shankar & Sinha1 
have made a detailed study of the Rayleigh problem for a wavy wall. They have 
concluded that at low Reynolds numbers the waviness of the wall quickly ceases to be 
of importance as the liquid is dragged along by the wall, where at large Reynolds 
numbers the effects of viscosity are confined to a thin layer close to the wall and the 
known potential solution emerges in time. Vajravelu & Shastri2 have devoted attention 
to the effect of waviness of one of the walls on the flow and heat transfer characteristics 
of an incompressible viscous fluid confined between two long vertical walls and set in 
motion by a difference in the wall temperatures. Lekoudis, Nayfeh, &SaricS have studied 
the compressible boundary layer flows over a wavy wall. Lessen & Gangwani* have 
investigated the effect of small amplitude wall waviness upon the stability of the 
laminar boundary layer. 

In this paper, we study the magneto-hydrodynamic flow of a viscous, iricompressible 
slightly conducting fluid between a parallel flat wall and a long wavy walt X-axis is 
taken along the parallel flat wall and a straight line perpendicular to that as the Y-axis, 
so that the wavy wall is represented by Y = a* Cos KX and the flat wall by Y = (I. 
The wavy and flat walls are maintained at constant temperatures of TI and T, respec- 
tively. We assume that the wave length- of the wavy wall which is proportional to 1/K 
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is large. The fluid is sucked through the wall Y = 0 with the constant suction 
velocity V,. Taking the fluid to be of small conductivity with magnetic Reynolds 
number much less than unity, the induced magnetic field is neglected in comparison 
with the applied magnetic field6. 

2. Founulation and Solution of the Problem 

In the absence of any input electric field the equations of momentum, continuity and 
energy are : 

where p is the fluid density, U and V are the veJa~ity components along axes of co- 
ordinates, P* the fluid pressure, p the coefficient of viscosity, o the electrical conducti- 
vity of the fluid, pb the magnetic permeability, Ho the intensity of the magnetic field, 
Cp the specific heat of the fluid, T the temperature, K the coefficient of thermal 
conductivity and 

In the energy Eqn. (4), the Joule dissipation heat is assumed to be negligiblee. 

The boundary conditions are 

U = 0, V = -Vo where Vo is a constant > 0 

T = T o o n Y = O  (5) 

au Since the flat wall is infinite in length, - = 0. ax 
We obtain 

v =  -v, 
by integrating Eqn. (3) and using Eqn. (5). 

We introduce the following non-dimensional equantities 
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In view of Eqns. (7) and (8), Eqns. (I), (2) and (4) reduce to 

where 

apt Hi h2 
M =  (Magnetic parameter) 

E" 

PCP p = -  
K (Prandtl number) 

- 
E =  Vi (Eckert number) CP(T~ To) 

R = 3 (Suction parameter) 
v 

And in view of Eqn. (8), the boundary conditions (5) and (6) reduce to 

u = O , v =  - I a t q = O  
u = 0, v = O a t ?  = ECOS Ax 

where 

E* 
E = - (non-dimensional amplitude parameter) h 

A = Kh (non-dimensional frequency parameter) 

From Eqn. (lo), we observe that the fluid pressure P is independent of Y. We assume 
ap that the pressure gradient - is a constant C. Solving the Eqn. (9) using the boundary 
ax 

conditions (12), we obtain the velocity distribution 

C Sinh la(€ Cos Ax - q)) + Sinh aq u = -[ M 
Sinh (a e Cos Ax) - 11 (13) 

where 

a = 4(Ra + 4M)'12 

The effects of magnetic and suction parameters on velocity distribution are shown 
in Figs. I b and 2. It is observed that the velocity increases as the frequency parameter 
of the wavy wall increases as shown in Fig. 3. 
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Figure la. Flow configuration. 
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Figure lb.  Velocity distribution for different Figure 2. Velocity distribution for different 
values of the magnetic parameter. values of the suction parameter. 

Skin friction 

The shearing strgss at the flat wall is 
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and the coefficient of skin friction is given by 

where Re is the Reynolds number. 

The coefficient of skin friction at the flat wall is 

The effects of magnetic and suction parameters on the skin friction are examined. It is 
seen that the skin friction increases with the increase in the magnetic parameter (Fig. 4), 
whereas the skin friction decreases with the increase in suction parameter (Fig. 5). 
But Verma & Mathur7 have observed that the coefficient of skin friction decreases as 
the magnetic or suction parameter increases when they considered magneto-hydro- 
dynamic flow between two parallel plates, one in uniform motion and the other at 
rest with the uniform suction at the stationary plate. The effect of the frequency 
parameter of the wavy wall on the skin friction is shown in the Fig. 6. 

Temperature Distribution 

We evaluate the te the equation 

d2T* dT* ' C2a>cosha 

F 
+ P . R  -=- 

d? M2 Sinh2 (a a Cos A X )  

+ Cosh2 {a(€ Cos Ax - r ) ) )  - 2 Cosh aq 

x Cosh (a(€ Cos Ax - q))] (15) 

Using the boundary conditions 

T* = I ,  at q = a Cos AX (16) 

Now the temperature distribution is 

- eaq (1 + e-@I) (1 - e-9)) + (a2 + PR)) 

f ({e-a1 $ 1 - e-az - e ( a i - ~ z )  + e-PRq Sinh a, 

- e-..(l + eal) ( 1  - e-32)) + (a2 - PR)) 

+ ({+a1 +az)  - pi + e-PRq Sinh a, 

+ ea~q-~i  (1 - e-02)) + (4a2 + 2a PR)) 
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Figure 7. Temperature distribution Figure 8. Temperature distribution 
f ~ r  different values of the magnetic for different values of the suction 
parameter. parameter. 
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+ ({e(~l-az) - e-QI - e-PRq Sinh a, 

+ eQi - 2aq ( 1  - eeaz)) +- (4aa - 2a PR)) 

+ ((E Cosh Ax (eMPRq - 1) Cosh a1 

+ q(l - e-az) Cosh a,) i PR)] 

where 

a, = a€  Cos Ax 

a, = PR E Cos Ax 

The efiects of magnetic and suction parameters are investigated on temperature 
distribution. It is observed that the temperature increases as the magnetic parameter 
increases (Fig. 7), whereas the temperature decreases as the suction parameter increases 
(Fig. 8). The temperature distribution at various points'of the flow field is obtained 
for different values of P. E. (Product of Prandtl and Eckert numbers) (Fig. 9.). .M is 
seen that the temperature decreases with the increase in the frequency parameter of the 
wavy wall (Fig. 10). 
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