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Abstract. Slow motion of an Oldroyd fluid past a sphere has been investigated using 
matched asymptotic technique. The drag experienced by the sphere has been obtained 
from the solution. To the first order in T (a non-Newtonian parameter), the drag is 
unchanged from its value for a Newtonian fluid but to the second order the drag is 
decreased. 

1. Introduction 

The solution for a sphere moving slowly in viscous fluid was first given by Stokesz. 
The solution gives good results in the close region of the sphere but does not explain 
the pattern at the large distance from the sphere. 0seen2 improved his results so 
that a correct overall picture of the flow field is obtained. Proudman and Pearson3 
in his paper improved this theory and obtained the improved drag formula for the 
sphere by the method of matched asymptotic expansion. *hey distinguished the 
Stokes flow near the obstacle and the Oseen flow away from the obstacle. Leslie and 
Tanner' have extended the Stokes flow using the Oldroyd model and obtained a 
solution by expanding in terms of a non-Newtonian parameters r Caswell and 
Schwarz6 have investigated the creeping motion of Rivlin-Ericksen fluid past a sphere 
using the matching procedure given by Proudman and Pearson3. 

The main aim of this paper is to investigate the CasweIl and Schwarz's problem by 
taking the 01droyd6 type fluid, that is, to extend the problem of Leslie and Tanner by 
matched asymptotic expansion. The Oldroyd fluid is of the type poly-isobutylene in 
carbon tetrachloride. 

2. Formulation of the Problem 

We shall work through the spherical polar coordinates (R, 8, 4 )  with the centre of the 
sphere as origin and 8 - 0 in the upstream direction. Owing to axial symmetry, the 
system is independent of 4 coordinate. First of all we transfer all the equations, that 
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is, the equation of state relating the stress tensor and the rate of strain tensor (Oldroyd 
fluid) and the familiar equations of motion and continuity for steady, incompressible 
flow, from tensor form to the spherical polar coordinate system and then made them 
non-dimensionalized by the usual procedure. 

The boundary conditions are obtained by the requirement of the no-slip at the 
surface of the sphere and the uniform condition at infinity, that is 

Ur ug = 0 at r =  1 

Ur = - cos 0, ug = sin 0 at r -+ oo (1) 

(ur, ug etc. are velocity components non-dimensionalizad by the uniform velocity U). 

3. Method of Solution 

The equation of continuity suggests the existence of the stream function 9 such that 

Now for small Reynold's number, solutions for all physical components (namely 
stream function, stress etc.) are assumed to have an inner (Stokes) expansion as 

This is the solution of Stokes region where Re r < O(1). Since the Eqn. (3) does not 
hold good for large values of r, the uniform stream condition at infinity must be 
replaced by the requirement that the expansion should be perfectly matched to an 
expansion which is valid in the outer region. Now for the outer (Oseen) region, we 
define the stretched variables p and Y! as 

p = Re 1 and Y! = Rez$ (4) 

The expansion in the outer region, which we call the Oseen expansion, is now assumed 
to take the form 

The solution (3) will satisfy the no-slip condition at the surface of the sphere and 
Eqn. (5) will satisfy the uniform condition at infinity. In order to find the complete 
solution the remaining constants are evaluated by matching conditions in the over- 
lapping region. 

Leading terms of the solutions 

Using equation of state, motion and continuity and with the help of Eqns. (2) and (3), 
the equation governing 4, is obtained and solved with the help of power series in 
terms of T (a non-dimensional non-Newtonian parameter) as 
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Adopting the same procedure as given by Proudman and Pearson the solutions of 
various components in Eqn. (6) are given as 

where p = cos 0 and e is a dimensionless constant. We have not mentioned here the 
solution of JI0, due to its lengthy form. Hence we can have +, . 

The leading term for the Oseen's region can also be derived as pointed out by 
Proudman and Pearson and can be given as 

Higher order terms in the Oseen and Stokes expansions 

Since the matching procedure for the inner and outer expansions involves only the 
Newtonian terms, the first order solution to Oseen's expansion can be obtained as 

Yl = - 3 (1 + p) [1 - exp{ - 4 p(l - P)}I (9) 

The solution for 4, (refer Caswell and Schwarz) which is properly matched with Y,, 
is given as 

where +, has been taken in the form 

4. Drag on the Sphere 

The drag on the sphere is given by 

D 
( p r ~ ) r - ~  sin2 0 d0 + (p - prr),,, sin 0 cos 0d0 (12) 2x0 U a  

0 0 

where qo is constant having the dimensions of viscosity, U is uniform fluid velocity, a 
is radius of the sphere, p is isotropic pressure andp,,, pro etc. are stress components. 

Substituting the values for p, p,, and p ro  the final expression for the drag in our 
case is 

D = 6xqo Ua (1 + $ Re) - [0.016(1 - e) (3 - e) - 0.618 p] 7" (13) 

where @ is a known constant. 



254 P D Verma & R C Chaudhary 

Equation (13) predicts that to the first order in T the drag is unchanged from 
its value as obtained by Proudman and Pearson for a Newtonian fluid but to the 
second order the drag is decreased, because Q < 0 and e < 1. If we take r = 0, the 
Eqn. (13) agrees with Proudman and Pearsons. 

! 
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