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Abstract. A detailed investigation of waves in a viscous liquid layer of finite thickness 
sandwiched between two generalized thermoelastic halfspaces reveals the fact that for 
realistic situations one has to consider the effect of gravity at least in the liquid layer. 

1. Introduction 

This paper deals with waves in a viscous liquid layer sandwiched between two genera- 
lized thermoelastic halfspaces. We assume the presence of gravity in the liquid layer, 
in addition to viscosity. This paper is a continuation of the previous articles of the 
auth0rl3~ and has immense applications to defence science, mainly in geophysical 
problems, such as water-covered or oil-covered layers in the earth's crust. It  may also be 
noted that the problem considered here is more realistic3 than its elastic counterpart. 
The preliminaries on thermoelasticity may be found in Nowacki4. We refer to the earlier 
article2 for the notation and terminology. 

2. Basic Equations 

We consider a liquid of density p, and of thickness 2H sandwiched between two heat 
conducting homogeneous isotropic generalized thermoelastic halfspaces of densities p, 
and p,. A rectangular cartesian coordinate system (x, y, z )  is set up in the media with 
the z-axis chosen downwards and the x, y axes along the middle plane of the liquid, so 
that the interfaces correspond to z = + H and z = - H and for definiteness, the 
solid of density p,, lies below the liquid layer, i.e. occupies the region z > H. The 
solids are assumed to be sufficiently incompressible with quite significant relaxation 
time factors, so that gravity effects may be ignored in the solid media, using a result of 
Jeffreys3. Moreover, the problem is converted into one of two dimensional plane strain 
by taking a plane section of the media containing the x and z axes and assuming 
independence of all quantities with reference to y. Before any disturbance (say, an 
explosion) the media are uniformly maintained at a constant temperature To. The 
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displacement components (u,, o, w,) in the liquid layer may be expressed in terms of 
a potential function X by 

where X satisfies the partial differential equation 

in which a, denotes the velocity of sound waves in the liquid, g the acceleration due to 
gravity and t the time variable. 

To obtain progressive waves, a simple-harmonic time-dependence factor 
exp {(ax - iw t ) )  is assumed for X ,  where 6 denotes the wave number and w the 
frequency parameter. Then Eqn. (2 )  yields 

which on solving leads to 

X = [Aoe-m~5 4- B,,en80#] enp { - gi + i(6x - o r )  
2a 20 

where 

The normal and shear components of the stresses in the viscous liquid are given in 
terms of X by 

where v, v' denote the viscosity coefficients5. 

For the solid halfspace z > H of density p l y  the displacement components (u,, 0, w,) 
are given by 

where the potential functions A. 4,  and the temperature deviation TI  from T o  are given 
by the following expressions as in (Ref. 2) 

ylrlT, = p,  [A1(o2 - a:  f :) e-"l + B,(02 .- a ;  q : )  e-zbl 1 ' -  ea('" ~ t )  

which tend to zero as z + oo. 
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In Eqn. (8), y, is the ratio of the coemcient of thermal expansion to isothermal 
compressibility, z, = 1 - iwz; where 7; is the relaxation time factor, a, = 46' - f ,2, 

b, = - q:, c, = J a 2  - w2/p:, Re (a,), Re (b~), Re (c,) are all non-negative, ul 
is the isothermal compressional wave velocity, P1 is the shear wave velocity and f :, q: 
are the roots of the biquadratic equation 

where k, is the coefficient of thermal conductivity, s, is the specific heat at constant 
strain and E, = y: TO/slP:u: is the coupling constant. (el is of the order 1 k 2  while z; 

is of the order 10-l'). 

The normal and shear stresses in the solid media are given by the expressions 

A similar analysis remains valid for the halfspace z < - H of density p, above the 
liquid layer. To obtain the corresponding expressions, we have to merely replace the 
subscripts '1' in Eqn. (8) by subscripts '2' and change the sign of z throughout to get 

95 - [Aze@z + BZe~bz] e i ( C ~ - m t )  
2 - 

42 /a C ezQ ee"cE-wt) 
2 

y27*T2 = p2 [A2(w2 - a; f i) ezaa -/- B2(w2 - aiq;) ed2] eaCa-mt) (1 1) 

which tend to zero as z -t - 00, with self-explanatory notations. 

3. Boundary Conditions 

In order to eliminate the eight unknowns occuring in the Eqns. (4), (8) and (1 I) ,  
namely, A,, B,, A,, B,, C,, A2, B2, C,, we impose the following natural conditions at 
the interfaces. 'The normal displacement, the normal strep, the tangential stress and 
the temperature deviation are all continuous'. 

The w - 6 Equation 

This equation (also called the frequency equation or the dispersion relation) is 
obtained by equating the determinant of the eighth order of coefficients of the unknowns 
to zero. The eight equations satisfied by the eight unknowns A,, B,, A,, B,, C,, A,, 
B,, C2 are 
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= [(2v + v') at - pow2 - ~ ' 8 ~ 1  e-HaoA0 

+ [(2v + v') bt - pow2 -- v187 eHboBn 

p2DzeHa2A2 + p2D,eHb2B, - 2iSp,p; c2eH0eC, 

= [(2v + v ' )  a: - pow2 - ~ ' 8 ~ 1  eHaoAO + [ ( 2 ~  f- V 1 )  b; - 
- v'a2] cRboBO (12) 

2i8p1@,? ale-Hal A, + 2i8plp: ble-Hb1 Bl - plDle-HQ~ Cl 

= 2~i8a,e-~oHA~ - 2vi8boeboHB, 

2i8p2p: a2eHa2 A2 + 2iSpzpg b,eHbz B, - p,D,eficz C2 

= 2vi8aoeaoHAo - 2vi8boe-#oHBo 

(w2 - a#2 f :) e-Ha1AI + (w2 -- a#2 q,2) e-HblB, = 0 

(ma - a: f i) eHa2 A, + ( w 2  - a: q i )  eHbzB2 = 0 

where we have set 

a, = mo + g/2at bo -- mo - g/ 2a: 

Dl = 28: 8, - m2 D2 = 2@: 82 - 02 (1 3) 
Employing the, notations 

(2v + v') a: - pow" ~ ' 8 2  = a* 

(2v + v') bt - powa - v'a2 = b* 

the consistency criterion after simple manipulations is given by 
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On further simplification Eqn. (14) becomes 

A E P i p 2  exp {H(a,  + b2 + c2 - al - b~ - ~ 1 ) )  

x [(vlbo + Elb*) (v2ao - tau*) ezmoH - (vlao - h a * )  (v2bo + E2b*) 
c h o H ]  = 0 (15) 

where for j = 1, 2 

qj = Dj(pjDj + 2 8 4 )  a: (q: - f3 i- 4cjP: a2(pjP; - v) 

t j  = ( 4 ~ :  sz - w2) [w2(bj - a5) - cry (b j  f; - ajq:)] 

Thus the consistency criterion is given by 

g2 - (pow2+~1a)2 (tlq2-t2q,) mo- (2v + v l )  (t1?2+ ti13 (?n:  - =) 
- - tanh 2m0H = 

g2 ( ~t ) - t ,U ,~ *+~ '82 )2 - t1~2 (2v  +v'12 (m:--) v1q2 mo - - 

In the absence of viscous terms, the above Eqn. (17) reduces to 

pomowz(ti~a - E2q1) 
tanh 2moH = 

g2 
( 1  8) 

qlq, ( m i  - =) - pow'~lt2 - ( t i l ~  + F Z ~ J  

If gravity terms are also omitted, then Eqn. (18) becomes 

w"ow2(t1q2 - t2v1) 48' - w21a: 
tanh 2H J s ~  - = q1q2(62 - w2/ag) - P O W ~ E I F ~  

which is similar to its elastic counterparts. 

4. Conclusions 

Equation (17) generalizes the corresponding Eqn. (24) of (ref. 2; p. 141) and includes 
both the viscous as well as gravitational effects. Several limiting cases of the above 
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Eqn. (17) may be analysed2. A theoretical analysis shows that in most of the expres- 
sions, the gravitational effects are quite pronounced. These expressions are more 
cumbersome than those in [ref. 21 and hence not repeated here. However, we list the 
following conclusions: 

(1) As the frequency increases, the effect of viscosity becomes vanishingly small. 

(2) The effect of viscosity is to slightly increase the phase-velocity of the propagated 
waves and also the attenuation in the x-direction. 

(3) Very high frequencies or a very thin liquid layer lead to the same approximation 
of the dispersion relation which yields expressions for the viscosity coefficients v and v'. 
In such cases, the thermal terms may also be neglected. 

(4) If the solids are incompressible, then in the case of a thin liquid layer, the effect 
of thermal terms may also be neglected in the case of small frequencies. i.e. for small 
frequencies, the compressibility of the solids do not play a significant role. Also, 
gravity effects may be ignored for small frequencies. 

(5) Gravity effects are quite pronounced for large frequencies. 

(6) In realistic situations, such as oil-covered layers in the earth's crust gravity terms 
must not be neglected. In order to verify this statement, we include the following 
expression, wherein the solids are incompressible. 

g""" {48qhclp:- p2c2p:) + h(282p?-~a)2- p2(2S2p! - w ~ ) ~ }  
tanh 2m0 H = 2~ 0 

p: p2~2~8-4S4~4p0m0(plclp:+ p2c2p3-- 16S6plp2c,czpfP~(m~ - g 2 / 4 3  

x (2S28: - w2)a (2Sa@; - w:)' (20) 

We notice that in Eqn. (20), the gravity effects are quite pronounced, as stated 
earlier. 

(7) There exists dispwsion of waves in all the cases. 

The problem considered in this paper has immense applications to defence science, 
mainly, in geophysical problems, such as oil-covered layers in the earth's crust. The 
numerical study of this paper is under preparation. 
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