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Abstract. When a straight channel formed by two parallel plates, through which two
immiscible fluids are flowing under constant pressure gradients is rotated about an
axis perpendicular to the plates, secondary motion is set up. The secondary motion
is analysed in detail for constant angular velocity Q’, ) the ratio of the densities of
the lower and upper fluids and w?® the corresponding ratio of their viscosities. The
associated heat transfer problems, when the plate temperatures are equal and different,
have also been studied.

1. Introduction

The fundamental difficulty in solving the Navier-Stokes equations either exactly or
approximately is the non-linearity introduced by the convection terms in the momen-
tum equations. There exist, however, non-trivial problems in which the convection
terms vanish and these provide the simple class of solutions of the equations of motion.
One such flow has been considered recently by Vidyanidhi & Nigam! who have
studied the secondary flow when a straight channel, formed by two parallel piates
through which fluid is flowing under a constant pressure gradient, is rotated about an
axis perpendicular to the plates. This problem was later extended by Vidyanidhi* in
the frame-work of hydromagnetics and by Vidyanidhi, Bala Prasad & Ramana Rao®
to include the effects of uniform suction and injection. The latter analysis has been
made use of by Ramana Rao & Bala Prasad* in studying the temperature distribu-
tion. The influence of stratification on rotating fluids was brought about by Niimi® for
the flow between two parallel infinite disks. The hydrodynamic couette flow and heat
transfer in a rotating frame of reference was also studied by Jana & Datta® and
later extended in the frame-work of hydromagnetics by Jana, Datta & Mazumder”.
These problems have wide applications in designing thermo-syphon tube, in cooling
turbine blades and have some bearing in MHD power generation.

The velocity profile due to the flow of two incompressible immiscible fluids between
two parallel plates and occupying equal heights was obtained by Bird, Stewart &
Lightfoot®. This problem was further generalised by Kapur & Shukla® to the case
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of flow of a number of incompressible immiscible fluids occupying different heights.
The stability analysis of two superposed fluids between parallel planes was formulated
by Yih* and later extended by Nakaya & Hasegawal! to include the effects of
gravity and surface tension.

The authors'? have recently extended the work of Jana & Datta® for the flow
of two incompressible immiscible fluids, occupying equal heights between two parallel
plates. The present paper is an extension of the work of Vidyanidhi & Nigam?,
in which heat transfer characteristics, assuming equal and different plate temperatures
have aiso been studied. Olive-oil and water can be taken as the two immiscible fluids
to test the theoretical conclusions of this work for setting up an experiment as suggest-
ed by Vidyanidhi & Nigam!.

2. The Basic Equations and Solutions

The equations of motion and continuity for the steady state in a rotating frame of
reference 0'X’ Y’ Z’ as in Squire!® for two incompressible and immiscible fluids as shown
in Fig. 1 are, ‘

-> -> -> - - - - > . ’
., - VU, + 29 xU, = — ¢} V'w, + V23U, (1)
—>J -

v m 0 ’ )]
=., (the modified pressures) = pm — $pm | Q'xr" | % (m = 1, 2) 3

Here the subscripts 1 and 2 refer to the upper and lower fluids in the ranges 0 <z' < L
-

and —L < 2’ < 0 respectively. 711, _ilz, 5' and r' are the velocities of the upper

fluid, lower fluid, angular velocity and position vector respectively.

We choose a right handed cartesian system such that z’-axis is perpendicular to the
motion of the fluids under the action of constant pressure gradients P, = (—ox Jox")

in the direction of x’-axis between two parallel plates z' = + L (stationary relative to
oxX'YZz).
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Figure 1. Schematic diagram.
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Assuming that =, is independent of ¥’ and Zz', =, is given by

, Py, — P, , ,
-, = ( *“T—)x = Py 4

where p;”l and p’m2 stand for the pressures on the planes x' = 0 and x' = D
respectively.
The velocities of the two fluids are then represented by

- -
U, = [u, (2)), v;(2'), 0], U, = [, (2), v,(2"), 0] )
= (0, 0, Q) (6)
Introducing the non-dimensional quantities, '
> _,L ' PL* , P L* N o,
i‘—r,um——m':—Um,VMZ-szVm, =L2 (7)

(Taylor number for the lower fluid), p, = Apy, v3 = u,, the Eqn. (1) reduces to

— 2ty = 2 + dd“; 202y = %, 0<z< ) ®)

— ot = G, — (120, O
~ We seek the solutions of Eqns. (8) and (9) subject to the boundary conditions

uy=v=0atz= 1,4 =u, v =vatz=20 ]l

p,vlg—:l = PaVs Z: P1V1 —— 62’21 = pgvzj atz = 0, i (10)

Uy = vy =0 atz= — 1, | J

In terms of the complex notation,

gy = Uy + vy, ga = Uy + ivy (11
the Eqns. (8), (9) and (10) become

d’q, _ ‘

o =2 ‘ (12)
a? . 2 '
-d;L: — 2in¥q, = — S (13)

- — - - gy 4 dq, — ]

g, =0atz =1, ql—qzatz—O,W-—/\,u Eatz—o, } 14)

gy =0atz= —1, J

Solving Eqns. (12) and (13) subject to Eqn. (14), we get
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g = Aiﬂaz [(Sh(1 + D)o+ w[Sh(U+ Dax + @ — ) Ch(l + Da

Sh(! + i) apl} Ch(l + ) apz + p{ACh (1 +i)a
~ Ch(l + )ap — @A — 1) Ch(l + ) a Ch(l + i) au}
Sh (I + i) apz — Al (15)

g5 = m[{ASh(l +i)oe+ ApSh(l + Dep — QA — 1)

Sh(l + i)« Ch(l -+ #)au} Ch(l + i) az + ACh(1 + i)a
—Ch(l +Dap—A—=1DCh(l +i)aCh(l + i)au}
Sh(l 4+ i) az — A] (16)
A=Sh(l+i)aCh(l+ )oap+ruSh(l +DapCh(l +ia (I7)
where Sh and Ch stand for hyperbolic sine and hyperbolic cosine respectively.

Separating Eqns. (15) and (16) into real and imaginary parts, we get in terms of
the following,

gy =2+ L,by=2p— l,a, =a(u+1),b=a(@—1),
ds = a, Sha, cos a; +4- by Sh by cos by, b, = a, Ch a, sin a,
+ by Ch b, sinb, k = a3 + b3, p=a(uz + 1),

qg=oa(uz—1),s = a,Shpcosp+ b, Shqcosg,

t = a,Chpsinp 4+ byChgsing,r = a(l + 2), f= Shrcosr,
g=Chrsinr ry=p— ay, fo = Shr,cosry g, = Ch rysin r,,
h=rnt+oegi=ri—a fi= Sh‘flcosﬁ+Shg106sgI,

g = Ch fisin f, + Chg sing, f, = § — 2ufy — A — 1) fi — ay,
g=1—2u8 —pA—1Dg—byfi=b+rg=a-—-r

fs = b, Sh f, cos f, + a, Sh g, cos g, g5 = b, Ch f, sin f,
‘ +a,Chgsing, foy=oap +r gs=oap—r,

fo = Sh f; cos fy — Sh gg cos g, g; = Ch fi sin fg -~ Ch g sin g,
fo=2F+fi—a—-QA—Dfig=28+8—b—Q—-Dg

(18)
_ _b.e.
u, = 2f?¢l.,, 0283 , v = azf;sk:;“zzgs (19)
_ bafs — ags as fs + bags 9
u2 - /\k/ﬁocz H v2 Ak}bzd. (-0)
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As o— 0,
1
H1=”F+—1[2 + W=Dz — @A+ 1) 2%, v =0, 21
1
SRR, R B Y g 5 — (A2 2
e = LTy 2N Ot — Dz — o+ D) ) L )
va = 0
The skin-friction amplitudes at the upper and lower plates are respectively given by
_ 1 [AelT+dD) - p | \/2@2 + d3)
ru_m\[ EXLIRE e G EX ) @3)
wherel
¢4 = ayCha, cos @, + by Ch by cos b; — 2u (A — 1) Ch a cos &« — 2p,
dy = — a, Sh a, sin a; — b, Sh by sin b; 4+ 2u (A — 1) Sh « sin «,
¢s = — 20 — b, Ch b, cos b, + a, Ch a, cos a, +_2(}\-— 1) Ch ue cos ua,
ds = — b, Sh b, sin b, - a, Sh a; sina, + 2 (A — 1) Sh pa sin pa.
(24)
As e—0,
Apt 4+ 3 1 + 3au?
Ty = :5—F/——, =g
=T TR D &2

For large Q' such that (P/u’«®) remains finite, we obtain from Egn. (15) for
12220,

] ;
Uy = = e*r+==1 gin {ap (1 — 2)},

I (26)
e Ll = [—1 + ex*&1 cos {ap (1 — 2)}],
andfor0 2z 2 — 1,
Uy [—1 ,\p’ma e_'“'+” Sin o (1 + Z)s 1’
| l b 27

when' (P,/Au?«?) remains finite.

3. Results and Discussions

The velocity distributions for the primary and secondary flows have been shown in
Figs. 2 and 3 to illustrate the effects of the various parameters A, p and a. It is
concluded that as A increases, the primary flow decreases and the secondary flow
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Figure 2. Velocity profiles of the primary flow.
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Figure 3. Velocity profiles of the secondary flow,

increases at any point of the channel. As u increases, the primary flow always
decreases whereas the secondary flow decreases for the upper fluid and increases close
to the lower plate. Also it is noted that as « increases the primary flow decreases and
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the secondary flow decreases or increases in magnitude at any point of the channel.
We note from Eqn. (26) that the amplitude of u, is positive and that the function
sin ap(l — 2) can take positive or negative values. For a — oo such that (i) when
(P,/u*a?) is finite, the secondary flow is confined to regions of order (L/ag) in the

vicinity of the upper plate, the thickness of the boundary layer being of order
(Q'/v)~*72, (ii) when (P,/Au%?) is finite, the secondary flow is confined to regions of

order (L/a) in the vicinity of the lower plate, the thickness of the boundary layer being
of order (Q'/v,)~1/2.

The skin-friction amplitudes at the upper and lower plates have been shown in
Figs. 4 and S respectively for various values of A, u and «. It is concluded that the
skin-friction amplitude at either plate decreases with an increase in any of the
parameters.

It may be possible to perform experiments by rotating a channel of finite width
B which is large compared with the depth 2L. In such a channel the conditions close
to the walls z' = + L are not given by the above calculations but if the side walls are
in such a direction that there is no total flow across them, then the conditions can be
attained approximately over most of the channel. It is necessary to keep the side
walls at an angle ‘—¢’ with x'-axis where

0 i
J vedz + [ vdz
tan ¢ — ~ o @)
§ uydz + | wdz
= 0

0 ‘ !
0 DS 10 15 20

Figure 4. Skin friction amplitude I'y; at the upper plate.
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Figure 5. Skin friction amplitude T’ 1 at the lower plate.

0

It is concluded that the angle ¢ for any « decreases as A or p increases. In other
words the effect of A or u is to inhibit the secondary flow through the side walls.

4. Heat Transfer

The temperature fields for the upper and lower fluids can now be determined from the
heat transfer equations

dg, dq,, d°T,

m
4+ Km

o 29

Ym
0= & &

for m = 1 and 2 respectively. Here q,, = U, + IV, ‘}m =u, - ivfm, K, and K, are

the thermal diffusivities of the upper and lower fluids respectively. C, is the specific
heat at constant pressure. The first term on the R.H.S. of the above equation is due
to the viscous dissipation. :
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Plates Maintained at Equal Temperatures

It is assumed that the temperature of either plate is a constant T,. Introducing
the non-dimensional quantities of Eqn. (7) and in addition,

6, = (T, — TITy, 8= (Ty— T)IT, 1

P, (Prandtl number for the upper fluid) = v,/K;,

| . PL? > (30)
E. (Eckert number for the upper fluid) = (———) / G Ty,

) 2014
= K2/ K;, J
we obtain from Eqn. (29),
a2, : - d%, -
- dg, dq, AR dq, dq,
dE PIEG, dz dz ' d2fF T T g PE -3 & @D

as the non-dimensional temperature equations for the upper and lower fluids
respectively. .

Solving Eqn. (31) subject to the boundary conditions in non-dimensional form,

de, do, .
6,=10at z = 1,91:62at2=0,?=n7 atz = 0,0, =0
atz= — 1 : ; ’ 32)

we get in terms of the folloWing constants,

a, = (1 + A%?) Ch 2a — (1 — A*u®) cos 2a,

by = (1 — A% Ch 2a — (1 + A%?) cos 2a,

ay = 2\u Sh 2a, by, = 2 sin 2, ag = a; Ch 2ua + b, cos 2ua
+ a5 Sh 2u« -+ by sin 2ua, '

2

4, =3 [a4 + * Ch 2pux [2 +4(A—1)Chacosa + A= 12)A2(‘j4 4)]

+ (2w — 2p®)) Ch a; cos by — (2p + 2u2) Ch b, cos a;
\ —{—(l—;\—)[ar,Shoc,u.cosa,u+b5Choc,usinay.

— (a, — b,) Ch au cos oc,u]],

Bl={;[b4é- p2c0s2p,oc[2+4()«—1)Chacosa

(equation continued on p. 190)
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A — 1?2 (a
+ 2AE

— b“)] + (2u + 2u%A) Ch a; cos b,
— (2 — 24*) Ch b, cos a, + (1 - -;m) [a; Sh ap cos ap
4 by Cho sin ap + (25 — by) Ch ap cos ap] ] ,

A, = %[a5 + 2u(pA —1)Sha, cos by + 2u(pA -+ 1)Shb, cosa,

— 12 (aq, —
- 24* Sh 2pa [1 +2@A —1)Cha cos a + @ 14))‘2.(;: b4)]

+ (1 — :\—) [(a, — b,) Sh ap cos ap — a; Ch ap cos ap
— b; Sh ap sin M;L]] ,

By, = % [b5 +k2u(;u\ — 1) Ch b, sin dl + 2u (A + 1) Ch g, sin by

— D2 (q, —
— 2u?sin 2,.;«[1 £ 2 —1)Chacos a + 0 14),\2'1(1‘024 b4)]

+ (1 - »i-) [(@s — b,) Ch ap sin ap + a5 Sh ap sin o

— by Ch au cos ay) :I ,

A, = } [22® Ch 2« + (A%u2 + 1) Ch 2ua — (A%k® — 1) cos 2ua
4 22 — 1) Ch g cos b, — 2A(Au + 1) Ch b, cos a
— 43X (A — 1) Ch 2a Ch ap cos ap + 2 (A — 1) [(Ch 2au
+ 0 2e) Ch & cos & — Ap Sh 2 Sh a cos a
— Ap sin 2ap Ch « sin @] + (A — 1)® Ch 2a(Ch 2ap + cos 2ap)],
B, = } [—2X2cos 2a + (A%? — 1) Ch 2ua — (A%® + 1) cOs 2ua
+ 20 (Ap + 1) Cha, cos b, — 2X (\u — 1) Ch b; cos a,
, + 4X(A — 1) cos 2u Ch op cos ap — 2(A — 1) [A Sh 2ap Sha cos o
+ A sin 2au Ch « sin & + (Ch 2ep + cos 2apu) Ch o cos a]
— (A — 1)2 (Ch 2ap -+ cos 2ay) cos 2al,
As = N Sh 2a + A%u(Sh g, cos b, + Sh b, cos a;)

— A(A — 1) 2 Sh 24 Ch au cos ap — A Sh 2ap — A(Sha, cosb, —
. (equation continued on p. 191)
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— Sh b, cos ;) + (A — 1) (Ch 2up + cos 2ap) Sh « cos «
— A (A — 1) (Sh 2up Ch « cos « -+ sin 2up Sh« sin «)
+ 4 (A — 1)* Sh 2« (Ch 2up - cos 2uu),
B; = A®sin 20 + A% (Cha, sinb; + Ch b, sina) — 22 (A — 1)
sin 2a Ch ap cos ap — Au sin 2apu — A (Ch b, sin a,
— Ch g, sin b)) + (A — 1) (Ch 2apu + cos 2au) Ch « sin «
— A (A — 1) (sin 2ap Ch o cos o — Sh ‘2ccy. Sh « sin «)
+ 3 (A= 1) sin 2« (Ch 20 + cos 2up),
A; = A, Ch 2up + B, cos 2ap + A, Sh 2ap -+ B, sin 2upu,
B, = A, Ch 2u + B, cos 2« — Ay Sh 20 — By sin 2« (33)

PEc .
4y = (1T + -,))1 PREWL (A (4; + 4 + By — 2uad, — 2uaB,)

+ #2 (B7 — A4 — B4 -f— 2“A5 ‘% 2“85)],

P,E '
By = oy gt ¥ (s — ndy — B, + 2uad, + 2uaBy)

— 12 (B; — A, — B, + 2ud; - 2aBy)],

4 PE
BTSRRI

-+ ”2 (A4 + B4 + 7)B7 + 27)“145 + 2"1“35)],

_P.E: |
B = N (0 + 1) agaip®a® [A*n (47 — 4y — By — 2pady — 2paB,)

3 (AP (4; — 4y — B; — 2uad, — 2uaBy)

+ u*(4y + B, — By -+ 2qad; + 2naB;)] ' 34
’ A ' PIEG
1 = A3 + B3z — Ao [4; Ch 2paz + B, cos 2uaz
el &
~+ A, Sh 2paz + B, sin 2paz] 35)
0, = A, 4+ B,z — M—[A Ch 2z + B, cos2uz 4 A. Sh 2
2 8 [ GetNpzt 14 4 5 oz
‘ + B, sin 2az] ‘ ~ (36)
The heat transfer coefficients at the upper and lower plates are respectively given by,
P el I TN
U= — T.i 4z e dz . = agu’a’ 1 oL o

— By sin 2ap + A, Ch 2ap + B, cos 2uu] — B, 37
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- 4T de; |
_ L % __2PE. .
o= | T @ | T g [T A4S
4 Bysin2x + 4, Ch 2« + B; cos 2a] 38)
As a — 0, we get from Eqns. (35) to (38),
- — _&__. 2 __ 1\2 52 2.4 3
O = A+ Br — i B0 — P2 - A0 — 1)z
20 4 2] (39)
o . — PlEc 2 1\2 .2
0, = C + Dz G Ot 1) [3 (Au 1)z
— 4%t — 1) 2% 4 2Qu? 1) 24 (40)
where ’ '
A PrBe (M — 200 + 9N+ 9Nt — 20t 4 1)
6(n + 1) A% Ou® + 1) ’
_ _ nPEe [: 24 s
B=mb = gmr nowFor [N 9
b conmut ol
e OV — 2+ ) | @1)
and
— PyEs | 2 4 __ 2 _ 1
Hy = — —oi [1_+n[’\ 2+ 9 = s
ONtut — 20 + 1):] — 2N — dpt — 26] “2)
Hy = — PiEe [)@ B9 O — 20 + 1)
6 (A + 12 7+ 1 7 (q + 1) A%?
260%us + 4Ap® + 2 o
e )

Fig. 6 shows the temperature distribution for various values of A, i, 7 and a. It is
concluded that the temperature at any point of the channel decreases with an increase
in any of the parameters. The heat transfer coefficients at the upper and lower plates
haye been shown in Figs. 7 and 8 for above parameters respectively. It is concluded
that the heat transfer coefficient at either plate decreases with an increase in any of the
parameters. .

Plates Maintained at Different Temperatures

It is assumed that the temperature of the upper plate 7', is greater than the tempe-
rature of the lower plate 7. In terms of the non-dimensional quantities,
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Azuza=n=08

Azpu=0:05,a:1
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z
Figure 6. Temperature profiles,
L TioT T )
T T T T T, |
) r
( P L? ) {
E. (Eckert number for the upper fluid) = m / C (T, — Ty) )
(44)

We have to solve Eqn. (31) subject to the boundary conditions of Eqn. (32) except
when 6, = latz = 1.

Solving, we get,

, , , P.E
6, = A, + B,z — W[Al Ch 2uxz + B, cos 2uaz
6

+ As Sh 2paz 4+ B, sin 2uaz] (45)
, . , P.E,
92 = A, + Bsz—— W [A, Ch 20z + B, cos 2uz
+ A, Sh 2az -+ B; sin 2uz] (46)
where
. 1 . 7 b
bty Beht g |
' 1 1 ]> “n
As:As“i‘ma By = By + T_Tn_ J
The heat transfer coefficients at the upper and lower plates are respectively given by
2P.E, .
Hy = “a—,ffF [4; Sh 240 — B, sin 2ux + A, Ch 2ux
[

+ B, cos 2ua] — By (48)
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0

0 05 10 15 20
Figure 7. Heat transfer coefficient at the upper plate.
2P.E,

Wk[‘ A, Sh 2a —]— B, sin ZaM

+ A5 Ch 2« + B;cos 2a] R 49

Hp == B, —

As o > 0, we get from- Eqns (45) and (46),

S L ’ PlE” 2 z'
b=4' + Bz~ SO 4T [3 (,\,L — 1Rz
At — 1) 2 4 20+ 1y2 z4] g . (50)
: . PlEc ’2—_‘_ 3 .3 V
0, C' + Dz — 6()‘2_,_1)27])‘22[3()\,11. ’1)»z |
__4(w4— )2 + 20 + 1) 2] S (51)
where o
i |

s ) B = yD =B 0 : 52
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Figuré 8. Heat transfer coefficient at the lower plate.

As a — 0, we get from Eqns. (48) and (49),

‘ o 7 _ P,E, l:,") [)‘24__2)\2 9
Ho=— S~ s F I LT LY ~”f+

(A%t — 22 + 1) ] — 20t — Aat — 26] (53)

nA%u?

1 P.E. At — 2242 9
Hy = 12
£ 1+n+6~(1\w+1)2[ n+ 1

. (O %t — 20 - 1) I 260%ut 4 dAu? 4 2 ] |
n(q + 1) A? nAZul

It follows from Eqn. (48) that when E; = EY, where

(54)

. Bagu®ad
E* =

2[A; Sh 2ua — B, sin 2px -+ A, Ch 2ux -+ B, cos 2ua] P,
(59)

—
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then there is no flow of heat either from plate to the fluid or from fluid to the
plate.

Tables 1-6 shows the temperature distribution for various values of A, u, a, %,
P, = 0.72and E, = 0.02. It is found that the conclusions of the temperature distri-
bution of the previous case i.e., when the plate temperatures are equal, are also valid
in this case. Tables 7-8 shows the calculated values of the coefficient of heat transfer

Table 1. Temperature distribution when A = g = n = 0.5, ¢ = 0

z —1.0 —0.8 —0.6 —04 —0.2 0.0
(6P E,) 0.0 ‘ 10.598 20.296 29.732 39.133 48.317
z 0.0 0.2 0.4 0.6 0.8 1.0
(®/PE) . 48.317 52,756 57.140 61.422 65.547 69.444

Table 2. Temperature distribution when » = g = n = 0.5, & = 0.5

z —1.0 —0.8 —0.6 —0.4 —0.2 0.0
(8,/P:E¢) 0.0 10.589 20.284 29.719 39.119 48.304
z 0.0 0.2 0.4 0.6 0.8 1.0
(OQ/P,E,,) 48.304 52.745 57.129 61.414 65.542 69.444

Table 3. Temperature distribution when A =, = o = 0.5, a= 1

z —1.0 —0.8 —0.6 —0.4 —0.2 0.0
(6,/P\E.) 0.0 10.474 20,131 29.550 38.937 48.128
z 0.0 0.2 0.4 0.6 0.8 1.0
(8/P,Eo) 48.128 52.586 56.992 61.306 65.478 69.444

Table 4, Temperature distribution when A = p = =05,9=1.

z = —1.0 —0.8 —0.6 —~0.4 —0.2 0.0
(8,/PLE;) 0.0 7.710 14.973 22,105 29.220 36.228
z 0.0 0.2 0.4 0.6 08 1.0
(®/P:E,) 36.228 43.084 49.884 56.584 63.127 69.444

Table 5. Temperature distribution when A = ¢« =y =05, p =1

z -1.0 -0.38 —0.6 —-04 -0.2 0.0
(0,/PLE;) 0.0 10.002 19.500 28.760 37.943 47.117
z 0.0 0.2 0.4 0.6 0.8 1.0

(6;/P,E,) 47.117 51.696 56.252 60.759 65.174 69.444
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Table 6. Temperature distribution when « = ¢ = ¢ = 0.5, A = 1.5

z —1.0. —-0.8 -0.6 —-0.4 —0.2 0.0
(8;/PiE,) 0.0 9.597 19.006 28.332 37.639 46,941
z 0.0 0.2 0.4 0.6 0.8 1.0
(0;/P1Ec) 46.941 . 51.581 56.191 60.738 65.175 69.444

Table 7. Coefficient of heat transfer at the upper plate (~Hy/P,E,)

AN
by " 7 N\ @ 0 0.5 1 1.5
N
0.5 0.5 0.5 18.788 18.816 19.194 20.278
0.5 0.5 1.0 30.867 30.892 31.226 32.184
0.5 1.0 0.5 20.796 20.888 21.714 22.578
1.0 0.5 0.5 20.257 20.282 20.604 21.424

Table 8. Coefficient of heat transfer at the lower plate (Hy/P,E,)

A " Ty N« 0 0.5 1. 1.5
N

0.5 0.5 0.5 56.811 56.745 55.857 53.304

0.5 0.5 1.0 40.485 40.449. 39.960 38.558

0.5 1.0 0.5 52.037 51.834 49.987 48.011

1.0 0.5 0.5 50.247 50.212 49.752 48.587

Table 9. Critical Eckert number EF

~
X @ 7 P, N« 0.0 0.5 1.0 1.5
N
0.5 0.5 0.5 0.72 0.106 0.143 0.157 0.219
1.00 0.076 0.101 0.111 0.156
2.00 0.038 0.046 0.051 0.074
4.00 0.019 0.019 0.022 0.033
0.5 05 1.0 0.72 0.180 0.222 0.244 0.337
1.00 0.130 0.158 0.174 0.241
2.00 0.065 0.077 0.084 0.118
4.00 0.032 0.036 0.040 0.057
0.5 1.0 0.5 0.72 0.197 0.273 0.441 1.197
1.00 0.142 0.194 0.315 0.859
2.00 0.071 0.093 0.154 0.425
4.00 0.035 0.043 0.073 0.207
10 + 05 0.5 0.72 0.160 0.153 0.172 0.254
1.00 0.115 0.111 0.124 0.183
2.00 0.058 0.056 0.063 0.092
4.00 10,029 0.029 0.032 0.047
1.5 0.5 0.5 0.72 0.193 0.159 0.183 0.283
1.00 0.139 0.116 0.133 0.204
2.00 0.069 0.060 0.069 0.104

4.00 0.035 0.032 0.037 0.054
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at the upper and lower plates respectively. As in the previous case the heat transfer
coefficient at either plate is found to decrease with an increase in any of the parameters.

Table 9 shows the Eckert number E* for various values of A, 4, «, yand P;. It is

observed that this number generally increases with increase in w, A and «x whereas it
decreases with increase in P,/
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