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Abstract. When a straight channel formed by two parallel plates, through which two 
immiscible fluids are flowing under constant pressure gradients is rotated about an 
axis perpendicular to the plates, secondary motion is set up. The secondary motion 
is analysed in detail for constant angular velocity Q', A the ratio of the densities of 
the lower and upper fluids and pa the corresponding ratio of their viscosities. The 
associated heat transfer problems, when the plate temperatures are equal and different, 
have also been studied. 

1. Introduction 

The fundamental difficulty in solving the Navier-Stokes equations either exactly or 
approximately is the non-linearity introduced by the convection terms in the momen- 
tum equations. There exist, however, non-trivial problems in which the convection 
terms vanish and these provide the simple class of solutions of the equations of motion. 
One such flow has been considered recently by Vidyanidhi & Nigaml who have 
studied the secondary flow when a straight channel, formed by two parallel plates 
through which fluid is flowing under a constant pressure gradient, is rotated about an 
axis perpendicular to the plates. This problem was later extended by VidyanidhiZ in 
the frame-work of hydromagnetics and by Vidyanidhi, Bala Prasad & Ramana RaoS 
to include the effects of uniform suction and injection. The latter analysis has been 
made use of by Ramana Rao & Bala Prasad4 in studying the temperature distribu- 
tion. The influence of stratification on rotating fluids was brought about by Niimi5 for 
the flow between two parallel infinite disks. The hydrodynamic couette flow and heat 
transf6r in a rotating frame of reference was also studied by Jana & Datta6 and 
later extended in the frame-work of hydromagnetics by Jana, Datta & Mazumder7. 
These problems have wide applications in designing themo-syphon tube, in cooling 
turbine blades and have some bearing in MHD power generation. 

The velocity profile due to the flow of two incompressible immiscible fluids between 
two parallel plates and occupying equal heights was obtained by Bird, Stewart & 
Lightfoots. This problem was further generalised by Kapur & Shuklag to the case 
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of flow of a number of incompressible immiscible fluids occupying different heights. 
The stability analysis of two superposed fluids between parallel planes was formulated 
by YihtO and later extended by Nakaya & Hasegawal1 to include the effects of 
gravity and surface tension. 

The authorsla have recently extended the work of Jana & Datta6 for the flow 
of two incompressible immiscible fluids, occupying equal heights between two parallel 
plates. The present paper is an extension of the work of Vidyanidhi & Nigaml, 
in which heat transfer characteristics, assuming equal and different plate temperatures 
have also been studied. Olive-oil and water can be taken as the two immiscible fluids 
to test the theoretical conclusions of this work for setting up an experiment as suggest- 
ed by Vidyanidhi & Nigaml. 

2. The Basic Equations and Solutions 

The equations of motion and continuity for the steady state in a rotating frame of 
reference O ' X '  Y'Z' as in Squirela for two incompressible and immiscible fluids as shown 
in Fig. 1 are, 

?' 

x; (the modified pressures) = pm - +prn [ Q'xr' I a, (m  = 1 ,  2 )  (3) 

Here the subscripts 1 and 2 refer to the upper and lower fluids in the ranges 0 < z' < L 
3 3 3  + 

and -L  < z' 6 0 respectively. U;, Ui, $2' and r' are the velocities of the upper 

fluid, lower fluid, angular velocity and position vector respectively. 

We choose a right handed Cartesian system such that Y-axis is perpendicular to the 
motion of the fluids under the action of constant pressure gradients Pl, = (-ax~lax') 

in the direction of xf-axis between two parallel plates z' = -+ L (stationary relative to 
olx' Y'z'). 

Figure 1. Schematic diagram. 
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Assuming that 7sl, is independent of y' and z', x i  is given by 

where p i l  and p i 2  stand for the pressures on the planes x' = 0 and x' = D 

respectively. 

The velocities of the two fluids are then represented by 

+ -+ 
u; = ru; (z'), v; (z'), 01, u; = [u;; (z'), v; (z'), 01 

Introducing the non-dimensional quantities, 

(Taylor number for the lower fluid), p2 = X p , ,  v2  = $v,, the Eqn. (1) reduces to 

d572 
d2U2 2.4, - - , ( - l < z < O ) .  - 2a2v2 = - +- X p 2  dz2' 2 - d z Z  (9) 

We seek the solutions of Eqns. (8) and (9) subject to the boundary conditions 

In terms of the complex notation, 

ql = u1 + ivl, q2 = u2 + iv2 

the Eqns. (8), (9) and (10) become 

-- "'1 2iP2&2q1 = - 2 dz2 

Solving Eqns. (12) and (13) subject to Eqn. (14), we get 
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i 4, = - [{Sh ( 1  + i )  u + p [Sh (1' -I- i )  u p  + ( A  - 1 )  C h  (1 + i)  u 
A p2az 

Sh  ( 1  + i )  ap])  Ch(1 + i )  upz + p { A  C h  (1 + i )  u 

i 
q2 = Ap2u2h [{A ShA(l-+ i )  u + hp Sh (1 + i) up - ( A  - 1) 

Sh(1 + i ) u C h ( l  4- i )up)Ch( l  + i ) u z f  (ACh(1 f i ) u  

- C h ( l  + i ) a p -  ( A -  l ) C h ( I  + i ) a C h ( I  + i ) u p )  

where Sh and C h  stand for hyperbolic sine and hyperbolic cosine respectively. 

Separating Eqns. (15) and (16) into real and imaginary parts, we get in terms of 
the following, 

a, = a ,  Sh a, cos a, + b, Sh bl cos b,, b, = a, C h  a, sin a, 

+ bo C h  b, sin b,, k = a$ + b $ , p  = u ( p z  + I ) ,  

q = u (pz  - I ) ,  s = a,, Sh p cos p + b, Sh q cos q, 

t --- a,  C h  p sin p + b, C h  q sin q, r = a (I + z) ,  f = Sh r cosr, 

g = C h  r sin r, r, = p - a,, f, - Sh r, cos r,, go -- C h  r, sin ro, 

fl = ro + a, gl = r0 - a, f2 = Sh f ,  cos f ,  + Sh g, cos g,, 

+. a, C h  g4 sin g4, f, = up + rr, g, = U P  - r, 

f ,  = Sh f, cos f, - Sh g, cos g,, g, = C h  f ,  sin f, -- C h  g, sin g,, 

fs = 2Af + fs - a, - ( A  - 1) h, g8 = 2Ag -I- g, - b2 - ( A  - 1) g, 

(18) 
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v ,  = 0 J 
The skin-friction amplitudes at the upper and lower plates are respectively given by 

wheref 

c, = a, Ch a, cos a, + b, Ch b, cos b, - 2p (A - 1) Ch a cos a - 2p, 

d, -- - a, Sh a, sin a, - b, Sh b~ sin b, + 2p ( A  - 1) Sh a sin a, 

c5 = - 2A - b, Ch bl cos bl + a, Ch a, cos a, t 2 ( A  - 1) Ch pa cos F, 

d, = - b, Sh b, sin b, + a, Sh a, sin a, $- 2 (A - I) Sh pa sin F. 

(24) 

a --+ 0, 

For large a' such that ( P ; / p Z a 3  remains finite, we obtain from Eqn. (15) for 

1 ) z a o ,  

eu~(*l)  sin {up (1 - z)], U, c- 
p2a2 

1 
v, & - [- 1 + eUP(**) cos {up (1 - z))], 

p2az 
I 

J 

I 
e-*(I+" sin a (1 + z), U2 C! - 

Ap2a2 

1 
v2 r! - [ - 1 $- e-'"(l+" cos a ( 1  -+ z)], 

Apaa2 

when' (P,/Ap2a2) remains finite. 

3. Results and Discussions 

The velocity distributions for the primary and secondary flows have been shown in 
Figs. 2 and 3 to illustrate the effects of the various parameters A, p and a, It is 
concluded that as A increases, the primary flow decreases and the secondary flow 



186 V V Ramana Rao & N Venkata Narayana 

Figure 2. Velocity profiles of the primary flow. 

A =  ar05, ~ ( ~ 1 . 5  , 

z 
Figure 3. Velocity profiles of the secondary flow. 

increases at any point of the channel. As p increases, the primary flow always 
decreases whereas the secondary flow decreases for the upper fluid and increases close 
to the lower plate. Also it is noted that as cr increases the primary flow decreases and 
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the secondary flow decreases or increases in magnitude at any point of the channel. 
We note from Eqn. (26) that the amplitude of u, is positive and that the function 
sin up(1 - z) can take positive or negative values. For a -+ oo such that (i) when 
(PJP2a2) is finite, the secondary flow is confined to regions of order (L/ap) in the 

vicinity of the upper plate, the thickness of the boundary layer being of order 
(Q'/V,)-~/~, (ii) when (Ph/Ar2a2) is finite, the secondary flow is confined to regions of 

order (Lla) in the vicinity of the lower plate, the thickness of the boundary layer being 
of order (Q'/v2)-l12. 

The skin-friction amplitudes at the upper and lower plates have been shown in 
Figs. 4 and 5 respectively for various values of A, p and a. It is concluded that the 
skin-friction amplitude at either plate decreases with an increase in any of the 
parameters. 

It may be possible to perform experiments by rotating a channel of finite width 
B which is large compared with the depth 2L. In such a channel the conditions close 
to the walls z' = f: L are not given by the above calculations but if the side walls are 
in such a direction that there is no total flow across them, then the conditions can be 
attained approximately over most of the channel. It is necessary to keep the side 
walls at an angle '-4' with x'-axis where 

0 1 
j v2dz + J v,dz - 1 tan 4 = 

0 
1 

I uzdz -t S u,dz 
- 1 0 

0 ! 1 
I 

0 D.5 7.0 15 2 0 
.a 

Figure 4. Skin friction amplitude rU at the upper plate. 
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0 l I I I I 
0 0.5 1.0 1.5 2.0 

Figure 5. Skin friction amplitude rL at the lower plate. 

It is concluded that the angle 4 for any a decreases as A or p increases. In other 
words the 'effect of A or p is to inhibit the secondary flow through the side walls. 

4. Heat Transfer 

The temperature fields for the upper and lower fluids can now be determined from the 
heat transfer equations 

- 
# ,  for m = 1 and 2 respectively. Here qm = u; + ivm, qm = U; - iv;, Kl and K, are 

the thermal diffusivities of the upper and lower fluids respectively. Cp is the specific 
heat at constant p s s m e .  The first term on the R.H.S. of the above equation is due 
to the viswfils dissipation. 
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Plates Maintained at Equal Temperatures 

It is assumed that the temperature of either plate is a constant T i .  Introducing 

the non-dimensional quantities of Eqn. (7) and in addition, 

P, (Prandtl number for the upper fluid) = v,[K1, i 

Ec (Eckert number for the upper fluid) - 
I 

7 = K2IK19 

we obtain from Eqn. (29), 

as the non-dimensional temperature equations for the upper and lower %ids 
respectively. 

Solving Eqn. (3 1) subject to the boundary conditions in non-dimensional form, 

we get in terms of the following constants, 

a, = (1 + hap2) Ch 2u - (1 - h2p3 cos 2u, 

b4 - (1 - hapa) Ch 2u - (1 + hap2) cos 2u, 

a, = 2Xp Sh 2u, b, = 2Xp sin 2a, a, = a, Ch 2pu + b,  cos 2pu 

$. a, Sh 2pu -f b5 sin 2pa, 

+ 1 - - [a, Sh up cos up + b5 Ch up sin up ( 
- (a, - b,) Ch up cos up] , I 

b, - pa cos 2 p  2 + 4 (A - 1) Ch u cos u 

(equation continued on p. 190) 
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+ ( A  - - b4)] + (2p + 2p2A) Ch a, cos 4 

- (2p - 2$h) Ch b, cos a, + ( 1 - - : ) [a, Sh up cos up 

+ b, Ch up sin up + (a, - b,) Ch up cos up] , I 

+ ( I  - f) [(a. - b4) Sh up  cos up - a, Ch cup cos up 

- b, Sh up sin up] , I 

$- 1 - - [(a, - b,) Ch up sin up + a, Sh up sin up ( 9 

+ 2X (Xp - 1) Ch al cos b, - 2h(Ap + 1 )  Ch b, cos a, 

- 4h ( A  - I )  Ch 2u Ch up cos up -I- 2 ( A  - 1) [(Ch 2up 

-+ cos 2cp) Ch u cos u -- hp Sh 2up Sh a cos u 

- Ap sin 2up Ch u sin a] + ( A  - Ch 2u (Ch 2up + cos 2 ~ 1 1 ,  

B, = + [-2A2 cos 2u + (h2p2 - 1 )  Ch 2 ~ u  - (A2p2 $- 1 )  cos 2 ~ u  

f 2X (hp + 1 )  Ch a, cos b, - 2A (Ap - 1 )  Ch b, cos a, 

+ 4X(A - I )  cos 2u Ch up cos up  - 2(A - 1 )  [Xp Sh 2up Shu cosu 

+ A p  sin 2up Ch cc sin u + (Ch 2up + cos 2up) Ch u cos u] 

- ( A  - 1 j 2  (Ch 2csp -1 cos 2up) cos 2u1, 

A, = I\a Sh 2a + A2p(Sh a, cos b, 4- Sh b, cos a,) 

- h(X - 1 ) 2 S h 2 u C h u p c o s u p -  XpSh2up- A(Sha, cosb,- 
(equation coritinued on p. 191) 
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- Sh b, cos a,) + ( A  - 1 )  (Ch 2up + cos 2up) Sh a cos a 

- Ap ( A  - 1 )  (Sh 2up Ch u cos u + sin 2ap Sh u sin 4) 

+ h ( A  - I), Sh 2u (Ch 2ap + cos 2ap), 

B5 = A2 sin 2u + A2p (Ch a, sin b, + Ch b, sin a,) - 2h ( A  - 1 )  

sin 2a Ch up cos up - Ap sin 2ap - h (Ch b, sin a, 

- Ch a, sin b,) + ( A  - 1 )  (Ch 2ap + cos 2ap) Ch u sin u 

- A p  (A - 1 )  (sin Zap Ch a cos a - ~ h 2 u p  Sh a sin u) 

+ 4 ( A  - sin 2% (Ch 2ap + cos 2aP), 

A7 = A ,  Ch 2ap + B1 cos 2up + Ap Sh 2up -f- B, sin 2ap, 

B7 = A, Ch 2u 4- B4 cos 2a - A, Sh 2a - B5 sin 2u (33) 

A, = 
PlEc 

( 1 t Y)) a6a4p4A2 [A2 (A7 + Alrl + B ~ Y )  - 2paA2 - 2paB2) 

+ p2 (B7 - A4 - B4 -t 2aA5 -t 2uB5)], 

+ p2 (A4 -I- B4 - B7 -4- 2qaA5 + 2vuB6)] (34) 

0; - A, j- B3z - - ' lEc [A, Ch 2puz -I- BI cos 2puz 
a6p4a4 

+ A, Sh 2puz 4- B, sin 2pazI (35) 

0; = A, $- B6z - ' lEC [A4 Ch 2az + B4 cos 2uz + A, Sh 2uz a6p2h2u,~4 

+ B, sin 2azJ (36) 
The heat transfer coefficients at the upper and lower plates are respectively given by, 

L H o z - - -  
TL dz' 

2P1Ec [A, Sh 2ap 
a6p3u3 

- B1 sin 2ap + A2 Ch 2ap + Bz cos 2ap] - B3 (37) 
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i- B4 sin 2u + A, Ch 2a + B, cos 21x1 (38) 

As u -+ 0, we get from Eqns. (35) to (38), 

e; = A + B Z -  PIEc 
6 (Ap2 + [3 (Ap2 - 1)2 z2 - 4 (ASP4 - 1) 23 

+ 2 (Ap2 + 1)2z41 (39) 

8; = C $- Dz - PI Eo 
6yA2p2 (Xp2 + I)2 [3 (Ap2 - l)l za 

where 

and 

Fig. 6 shows the temperature distribution for various values of A, p, 1 and a. It is 
concluded that the temperature at any point of the channel decreases with an increase 
in any of the parameters. The heat transfer coefficients at the upper and lower plates 
haye been shown in Figs. 7 and 8 for abo-?e parameters respectively. It is concluded 
that the heat transfer coefficient at either plate decreases with an increase in any of the 
parameters. , 

Plates Maintained at Diferent Temperatures 

It is assumed that the temperature of the upper plate TL is greater than the tempe- 

rature of the lower plate Ti. In terms of the non-dimensional quantities, 
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z 
Figure 6. Temperature profiles. 

P;La 2 
i 
I 

Er (Eclcert number for the upper fluid) = ( - ) /c, (7; - T;) 
2 ~ 1 ~ 1  

I 
J 
(44) 

We have to solve Eqn. (31) subject to the boundary conditions of Eqn. (32) except 
when 0; = 1 at z = 1. 

Solving, we get, 

0; = A ' ,  + B i z - - -  'I& [A ,  Ch 2paz + B, cos 2 ~ z  
as#a4 

+ A2 Sh 2paz f B, sin 2 ~ a z ]  (45) 

0; = A', + B',Z - ' lEc [A, Ch 2.1 + B, cos 2.1 a,paA2qa4 

+ A, Sh 2az + B, sin 2az] (46) 
where 

The heat transfer coefficients at the upper and lower plates are respectively given by 

HIJ = 2P1Ec [A l  Sh 2pa - Bl sin 2 ~ a  + A ,  Ch 2pa a,p3a3 
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B~a,pSu3 
E: = 2 [A,  Sh 2pu - Bl sin 2pu f A, Ch 2pcr f B2 cos 2pu] P, 

(55 )  
, 
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then there is no flow of heat either from plate to the fluid or from fluid to the 
plate. 

Tables 1-6 shows the temperature distribution for various values of A, p, a, 7, 
PI == 0.72 and Ec = 0.02. It is found that the conclusions of the temperature distri- 
bution of the previous case i.e., when the plate temperatures are equal, are also valid 
in this case. Tables 7-8 shows the calculated values of the coefficient of heat transfer 

Table 1. Temperature distribution when h = y = q = 0.5, a = 0 

Table 2. Temperature distribution when )I = p = q = 0.5, a = 0.5 

- - -  

Table 3. Temperature distribution when h = p = q = 0.5, a= 1 

-- 

Table 4. Temperature distribution when A = y = a = 0.5, q = I 

--  

Table 5. Temperature distribution when h = a = q = 0.5, y - I 
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Table 6. Temperature distribution when a = 4 = p = 0.5, A = 1.5 

Table 7. Coefficient of heat transfer at the upper plate ( -HU/PIEc)  

Table 8. Coefficient of heat transfer at the lower plate (HLIP,E,) 

Table 9. Critical Eckert number E,* 
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at the upper and lower plates respectively. As in the previous case the heat transfer 
coefficient at either plate is found to decrease with an increase in any of the parameters. 

Table 9 shows the Eckert number E: for various values of A, p, a, 7 and PI. It is 

observed that this number generally increases with increase in a, h and 7 whereas it 
decreases with increase in PI) 
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