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Abstract. The criterion for stability of dusty fluid flow between two coaxially rotating
cylinders is derived by an examination of the stability of the basic flow to arbitrary
perturbations. The perturbation equations are explored under the assumption that

m
the relaxation timer | == F) of the dust particles is small. It is observed that

the flow is always stable if Rayleigh’s criterion p > %2 is satisfied. The principle of
exchange of stabilities is discussed and the characteristic value problem is solved under
the narrow-gap approximations.

1. Introduction

Saffman' gave a formulation of the problem of the linearized stability of a plane
parallel flow of a dusty gas; in which the dust is represented macroscopically in terms
of a number density of very small particles. Following Saffman, some approximate
results were obtained by Michael? for the problem of the stability of plane Poiseuille
flow of a dusty gas. Michael and Norey® considered the stability of laminar flow of
dusty gas between two rotating cylinders which start to rotate impulsively from rest.
Assuming that the relaxation time = is small, they derived perturbation equations and -
obtained solutions by considering the ratio of the time scales, on which the gas velocity
and the mass concentration of the dust change, to be both large and small. The
stability of Coutte-flow was considered by Chandrasekhar* in which the boundaries
are two coaxial cylinders and the basic flow is circular. He established the criterion
for stability by examining the stability of basic flow for arbitrary perturbation.
Analysing the disturbances into normal modes he obtained the solution of the perturba-
tion equations which are of the form U = e?*U(r) cos kz where p is a constant (which
can be complex) and k is the wave number of disturbance in z-direction.

In this paper the stability of* dusty fluid flow between two coaxial cylinder rotating
with different angular velocities is investigated using the aforesaid method of
Chandrasekhar. The perturbation equations are derived by assuming that the time
relaxation of dust particles is small. The principle of exchange of stabilities is discussed
and the characteristic value problem is solved under the narrow gap approximations.

155



156 R S Pathak & BN Upadhyay
It is interesting to note that Rayleigh’s criterion p > %? is a sufficient condition for

stability of dusty Coutte-flows also.

2. Basic Ei]uations

The hydrodynamical equations governing viscous incompressible ﬂmd in cyhndrlcal-
polar co-ordinates (r, 8, z) are given in components form

2
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and the other set of s1m11ar equatxons for the dust partlcles are glven by S
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We also have the equation of continuity ;
o +—i—a“’+a~“’—0 ™

In these equations ¢ is the time, p the density, v the kinematic viscosity, p* the pressurc, ,
k* the stokes resistance co-eﬂicxent m the mass of dust particle, N the number’ density
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-
of dust particles and ur, us, u, are the components of the velocity # of clean fluid, Vr,
-
Ve, v are the components of the velocity v of dust particles.

These equation allow a stationary solution of the form

ur = u; = 0 and us = U(r)

A ®
ve = v, =0and ve = V(r) |
For these solutions Eqns. (1) to (6) give
U:V.__rQ=A,+ir9_ , 9

where Q is the angular velocity of rotation about the axis and

R ~Rf *7 -~ RI—R:

Q,, R, and Q,, R, are the angular velocity and radii of the inner and outer cylinders
respectively.

3. The Perturbation Equations

We shall investigate here the stability of the flow described by the Eqn. (9), let the
perturbed state be characterised by

ur, U + s, u,,_i—l’ —a (10)
Vr, U + vO, Va.
Again let us assume that the ¢ and z dependence of the perturbations are given by
ur = e? y,(r) cos kz , us = e?® ug(r) cos kz 1
uy = e® uy(r) sin kz , w = evt w(r) cos kz |
' v : 11)
Ve = P v(r)cos kz, = ve = ep vo(r) cos kz }
v, = e?® v(r) sin kz , J

where k is the wave number of the disturbance in the axial direction and p is constant,
which can be complex. For solution of the form Eqn. (11) the linearized perturbation
equations are '

. » _ . ]
V(DD*—k2~f~)u, -{-ZTU‘Ue=g—;”——-I~(TN(Vr—ur) (12

s

V(D.D* — k- v—) s — (D*U) uy - %N(v. — 1) =0 (13)
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V(DD* — Kk~ %) Uy +- pacu (Ve — ) = — kaw (14)
k* :
DV — '2TU Ve = m (ur — V) v ’ ; (15)
. .
pve + (%‘ri + _‘ri) =y =) | a6
Sy = - (e — Vi) : amn
- D*uy = — kus ~ | - (18)

Eliminating u, v, and » from Eqns. (12), (14), (17 and (18), we get after some
rearrangements that . :

i [(DD* K — "’— - %) (bD* — k2)] tr

—%LJUQ—‘—,E—éji(vr'—-ur)”f‘Sﬂr (19)

where
Pm k*N
= K F pm)

This equation must be cons1dered together with
£ 3
(00t =t = L) s = @) e = X 00 — ) 20)

'where

d d | 1
b=a D*_(dr+7)'

Taking k—’:? = =, the time relaxation parameter, to be small, we can ignore the terms
. involving the product of . Under this approximation Eqns. (15) to (17) yield

Ur = Vr, Ug = Vo, Uz = V.

Thus the Eqns. (19) and (20) reduce to

: : . 2U
i k2 (DD* — k% — V_ — '“—) (DD* ol k2) —S] Uy = T Up (21)
and v ' ’
(DD’% — k= ’VL) us = (D*U) ur 22)
Measuring r in the units of R, the outer cylinder’s radius and writing k? = 1%— and
: SY TR
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2
2

2aR%
v

PR}

¢ === and replacing 24R ur by u, the Eqns. (21) and (22)

ug by ug and

with the help of Eqn. (9) finally reduce to

[(DD*'— a* — o — )) (DD* — g?) — a%\] Uy = — Ta? (~i— »-IE) Ug
and , _

(DD* — @* — o) ug = up (24)
where v v

T=4Q§R‘f(l—,u.)(l —%)

. e

k AR3 n*  SRi _ A

B 1—u vy T
Qz . R2

FTOr TR |
The solutions of Eqns. (23) and (24) must be investigated which satisfy the boundary
conditions suitable for no slip on the cylinderical walls at » — 1 and » — 9. These
conditions are that all the components of the velocity vanish on the walls. Thus
ur=ua=Dur=0forr=landr;n. :

4. Stability of the Flow for x > »?

Now we shall show that §vhen Rayleigh’s criterion u > +2 is satisfied, the flow is
naturally stable. For this we multiply Eqn. (23) by ru* (the complex conjugate of ur)
* and integrate over the range of r.

Thus we have

j! [(DD* — a2 - ¢ —A) (DD* — a*) — a*}A] u: dy
" .

1
=—T'a* | ru} §(r) uedr : (25)
1
where
- ,&)
2
T= 4R Sl
and

4= (1= (3 — %)
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since u» and its derivatives vanish'at r = 1 and r = ¥, the integrals on the left hand
side of Eqn. (25) can be transformed to positive definite forms by Chandrasekhart
(ref. Eqns. 172 and 173 p. 296). Further substituting for u, from Eqn. (24) in the
integral on the right hand side of Eqn. (25) and making the use of Chandrasekhar¢ (ref
pp. 296-97), finally we get

6+ NL+ 6L —aN =Ta%[(@®+ o*) I; + 1] (26)
where
1. .
Il=}{'r d;; —1—(;—12~—l—a2r> ur‘}dr
n .
1
=j](DD* —a®)ur [ dr
7
1
Iy = [ rg(r) | ue |* dr
7
1 ' 1
du?}
du 2 Iu [2 u (]
S‘ﬁ(r){ el B }d"-*2(1—,u)er°Tdr
7 7 ’

1
L= {r|uldr

7
Following the arguments of Chandrasekhar* (ref. pp. 279-298) and equating the real
parts of Eqn. (26), we have

2
RS ke (p) [11 — rar, + 4k

=]

ki

* Ak* .
I*:] + 7 I¥ 4 Positive terms = 0
where

2

dur
dr

s r} dr

. Since u > 7%, T” < 0, we have Re(p) > 0 and the flow is therefore stable.

- L
T

5. The Solution for the Case of a Narrow Gap when the Marginal State is Stationary

If the gap (R, — R,) between two cylinders is small in comparison with the mean
radius } (R, -+ R,), we need not distinguish D and D* in Eqns. (21) and (22). We

- B — R
can also replace Q = <4 + _rT) by Ql[l — (1 - p.)R — Ri]
2 2
By writing k= %, =2 il . sif-— =X and wusing the transformation

272
> 201: g u,, we find that the Eqns. (21) and (22) reduce to
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[(D* —a® — 6 — ) (D — a?) — @A ur = (1 + ) up (27
and

(D?— a® — o) uy = — Talu, . {28)
where

LY P

Equations (27) and (28) must be considered together with the boundary conditions.
ur = Dur = ug — O for ¢ = 1 and .

The case Re(p) =0 corresponds to overstability. In the case of clean fluid,
Chandrasekhar* has pointed out that experiments on onset of stability have failed to
reveal any suggestions of the overstability. Hence this case is not discussed. For
¢ = 0, we have A = 0 and Eqns. (27) and (28) reduced to chandrasekhar® (ref. Eqns.

(201) and (202), p. 300). Therefore in 'this case his conclusions (pp. 330-315) for
clean fluid hold equally good for dusty fluid. '

6. The Principle of the Exchange of Stabilities

Experiments on the stability of coutte flow of clean fluid suggest that instability sets
in as secondary stationary flow. To examine the validity of the principle of exchange
of stabilities, we translate the origin of coordinates midway between the two cylinders

and replace u, by uL(lz;-") We see that the Eqns. (27) and (285 reduced to

[(Dz_az__o-_)\)(p2_a2)—az).]urr-(l+e°x)uo v (29)
and ) |

(D — & —6) uy = — Tau, , (30)
where

- 1 —
T=41+wT, e:_z(ﬁf:‘l

consider at first the case x > 0

As in the case of clean fluid, we ignore the first order terms in ¢ on the right hand
side of Eqn. (29) and we get

[(D? — a2 — 6 — ) (D? — a%) — a2\ up = u, 30
and

(D* - @& — o) up = — Tau, (32)
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together with the boundary conditions
ur=ua=Dur=0fofx= + 3
we multiply Eqn. (31) by us (the conjugate of ur) and integrate over the range of x. |

Integrating by parts, we obtain

+3 +% v +3
§uuk dx = _f% | (D2 — @D ur Pdx + (o + N I%{ | Duy [*+ a® | ur|®} dx
.—% - —_

+3 ’
—aX | |uPdx : (33)
_ -3
From Eqn. (32), we find that
- _+3 +3
— Ta? j* u¥ug dx = jk {| Due [ + (a® + o*) | uo '} dx 349

combining the Eqns. (33) and (34) together, we find a relation independant of A which
is exactly the same as the equation of Chandrasekhar* (ref. Eqn. 285 p. 316). -From
which we conclude that / ' :

In(c) = 0 when T>0

and therefore the principle of stabilities is valid.

For negative values of , the replacement of ‘Eqns. (29) and (30) by (31) and (32)
leads to considerable errors. As in the case of clean fluid the possibility of over-
stability cannot be ruled out by the above discussion. Hence we solve the characteristic
value problem represented by Eqns. (27) and (28) with the boundary conditions.

Ur=uo:Du;,=0forC= 1 and 7.

7. The Solution of the Characteristic Value Problem for the Case ¢ 7 0

It can be easily verified that the characteristic value problem presented by Eqns. Q27
and (28) is not self-adjoint in the usual sense. To solve this problem we follow the
orthogonal developement of Chandrasekhar®.

Since e is required to vanish at ¢ = 0 and 1, we expand it in a sine series of the
form

- v
up = = Cm -+ sinmnf (35)

m=1

Having taken u, in this manner, we solve the equation

[(Dz—ba2 — 6= A (D*—a®) = aAur = (1 + ab) OEIICm - sin m=ng
. m=

(36)
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obtained by inserting Eqn. (35) in Eqn. (27) and arranging that the solution satisfies
the four remaining boundary conditions on ur. With u, determined in this way and u,
given by Eqn. (35), Eqn. (28) will lead to a secular equation in T :

|

i’ ! [1 + (—1)y™ cosh m,]
(w*n® -+ m3) (coshm, — cosh m,) 1

X [Q((-—I)"‘+1 + cosh m,) — pi (my cosh my — m, cosh my)

M/ . m . sinh m, mnw?
— » (smh m, — ’ESlnh ml) + T—] — m

ooy — gty |1+ (<Dt eostim, ] [0 (<

+ cosh m,;) — p£ (my cosh my, — m, cos my)

M (. _my . sinhm1]
? (smhmé Es:qhml)+T

mnn® . ' mym, L + m,M
— T [yl I Mtk T+ myM ,
o ) (—D**sinhm, | 1 + 7

mn RtL o mL + M
¥ G gy (S0 sinh m, [ ZHEE M

+ Xam + 38um — § (5% + a2+ o) {(mint + 4t L (5 + )

Snm ‘
2,2 2 Oam 4
X (mnt - ab) — gy Jom " 0 37
where
( 0ifm + nisaneven, m £ n
.
| tifm=n
‘ 2 o o—}—A)
f drmn 2 ('”2" tat— _“1__]
L7 —m (m27:2+a2)2+(c+z\)(m27:2+a2)—a2/\. n3(n® — m?)

Qa2+ o+ |, (642 4 @ th
mom = [MEIEN L0 (e ]

fa(—Tymt1 (m2 tat g C ;“")

T R LR L (6 T N R L @ = @R

X (my sinh m; cosh m, — m, cosh my sinh m,)

4a(m‘27c2 + a? + 6-2*-/\)

(mznz + a2)2 + (G + A) (mzﬁz + aZ) — a2,\ X

-+
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X (m, sinh m, cosh m, — m, cosh m, sinh m,)
— (=1)m+1 (1 + a) (cosh m; — cosh m,)
(cosh m, cosh my — 1) my — m, sinh m, sinh m,
= 2 (1 — cosh m, cosh m,) mym; + (m? + m3) sinh m; sinh m,
4q (m2n2 N BRI ;— '\)
(m*n® 4 a®)? + (¢ + A) (m*n? -+ a?) — a@%A

0=

To draw any conclusion regarding the overstability one has to examine the roots
of Eqn. (37). i ‘@’ i

For given ‘@’ if there exists a real o for which the characteristic root of
Eqn. (37) is real, then overstability is possible

A first approximation to the solution
of Eqn. (37) is obtained by setting the (1, 1) element of the matrix equal to zero

This determines 7. Thus

3(=® + @*o){(n® + a*) + (¢ + A (»% + a®) — a®A}

azT
n? (1 + cosh m,)

= {x? + m?) coshm, — cosh m, [Q'(l + cosh m,)

’

— T (rm, cosh my; — m; cosh m,) — M

4
. _my sinh m,
X (smh my s sinh m; ) + S ]
_ n (1 + cosh my) ,
(=* + m3) cosh m, — coshm, [Q (I + cosh m,)

’

-7 (m, cosh m, — m, cosh m;) — M

P
. _my sinh m,
X (smh my m; sinh ml) + - ]
2 2
— m—“_mi—) sinh m, (1 (L) P+ myM) + o sinh m,
x (mL' + M)

M1y (38)

(u2 + a2+ 2 + )(m1 sinh m; — m, sinh m,)
= + @ + (c + N @ + @) — @
— (1 + «) (cosh m; — cosh my)
(oo 242)
(1:2 + @2 + (6 + ) (n® + a®) — a*a
X (m, sinh m; cosh m, — m, cosh m, sinh m,)

L =
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4m(rc2+a2+c;_,\)

Q' = (=* + @ + (6 + ) (=2 + &) — a2

8. Discussion, Conclusion and Applications

The perturbation Equations (12) to ( 18) are not easily solvable as they stand. Under
small gap approximations these are considerably simplified and some conclusions can
be drawn. The only general result without any approximation is contained in
section 4. This states that in the case of clean fluid the flow is stable when Rayleigh’s

criterion u (: g—z) > 9* is satisfied. In otherwords, for stability, the outer cylinder
1

must rotate with an angular velocity greater than %2-times that of the inner-cylinder and
in the same sense. Nevertheless, it appears to be only one which can be established on
general analytical grounds. In particular, it does not seem that we can deduce the
general validity of the principle of exchange of stabilities for this problm. No general
conclusion can be drawn, when x < 0. However, from section 6, we conclude that the
principle of exchange of stabilities is valid when # > 0. But no definite conclusion can
be drawn from this section for x < 0. To get a definite conclusion which is valid for
all positive and negative values of x one has to solve the secular equation (37)
and thus determines a critical value of T at which instability sets. The method of
solution is indicated by Chandrasekhar? (ref. pp. 303-307).

In recent years, workers in the field of fluid dynamics have been paying attention
to the study of dusty viscous fluid flows. The contamination of air in cities by dust
particles has necessiated the study of the flow of dusty gases. The study of fluid or
gas having uniform distribution of solid spherical particles is of interest in a wide
range of technical importance. These areas include fluidization (flow through packed
beds) environmental pollution, in the process by which drops of rain are formed by
the coalscenes of small droplets which might be considered as solid particles for the
purpose of examining their movement prior to coalscene, combustion and more
recently, flow of blood. It is due to these reasons, a number of studies of flow of a
fluid embeded with dust particles have appeared in the literature.

Engineering wise, such stability problems or similar ones may occur in liquid metal
bearings for machines which are physically within closed loops using liquid-metal
process fluids. Because of the low viscosity and high speed often associated with
such machines, Taylor numbers are high. Since liquid metals are good conductors,
magnetohydrodynamic effects could be significant.
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