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Abstract. Unsteady laminar flow of a dusty, viscous, incompressible fluid through 
a cylindrical tube of rectangular cross-section is studied when the pressure gradient 
varies (i) exponentially and (ii) harmonically w.r.t. time. The velocity fields for 
the fluid and the dust particles have been obtained. Results in limiting cases are 
derived. Flux and drag have been calculated. Flow through a tube of square 
section and flow between parallel plates have been obtained as special cases. 

The study of the motion of dusty viscous fluids has recently attracted a number of 
workers since the publication of Saffman's investigationst, which reveal the effect of 
the dust particles on the stability of the laminar flow of an incompressible fluid with 
uniform mass concentration of dust particles. Such situations arise, for example, in 
problems of fluidization; in sedimentation; in the use of dust in gas-cooling systems; 
in the movement of dustladen air; and in tidal waves. 

Michael and Miller2 and Mathur3 et al. have studied the plane parallel flows, while 
Michael and Norey4 Sambasiva RaoS, Tewari and Bhattacharjee6, Newal Kishore and 
Pandey7 and Rukmangada~har i~~~ have all considered dusty fluid flows in circular 
tubes under various situations. Rukmangadacharilo911, has recently investigated flow 
of dusty fluid through pipes of elliptic and triangular cross-sections. 

In this paper, we have discussed the flow of a dusty viscous fluid through a 
cylindrical tube of rectangular cross-section under the influence of a pressure gradient 
(i) varying harmonically with time and (ii) varying exponentially with time. Expressions 
for the velocities of the fluid and dust particles have been given in the form of infinite 
series and results in the extreme cases deduced. Physical quantities of interest viz., 
flux and drag have been evaluated. Results for the particular case of flow between 
parallel plates have been deduced and those relating to a tube of square section are 
obtainable by putting b = a. 

2. Formulation and Solution of the Problem 

- Taking the axis of cylinder as z-axis and assuming the number density N to be 
constant, Saffman's equations1 for the present problem reduce to 
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aw* m - = K(w - w*). 
at 

where w and w* are the components of velocity in z-direction; and the other symbols 
have their usual meaning. Eliminating w* from Eqn. (I) with the help of Eqn. (2), 
one gets 

where r(=rn/K) and f (=mN/p) are respectively the relaxation time and mass concentra- 
tion of dust. 

Periodic pressure gradient 

Case (i) Assuming the pressure gradient to be periodic with period 2x/a, and 
substituting? 

) = [a, +(x, Y) ,  +*(x, YII eht, (4) 

(where a is a real constant), in Eqns. (I) and (2), we obtain 

+* = 1 
I + iar d; 

and 

v2+ - X2+ + #/v = 0 

where 

2 -  i~ ( I  + f +  iar ) X - -  
v 1 f iar 

Now, putting 

a C = - -  
v A2 87 

we have 

Taking the rectangular coordinates so that the cross-section of the cylinder is defined 
by x = f a, y = f b, the boundary conditions are 

4 -- a/vA2, when x = f a, y = b (10) 

Solution of Eqn. (9) may be assumed in the form 
P I 

?The convention that real parts are to be understood whenever complex expressions are 
quoted for physical quantities, is adopted. 
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where 

The first of the boundary conditions (10) will be satisfied if 

and the second yields 

Multiplying this by cos pmX, both sides, and integrating w.r.t. 'x' between '-a' and 
'a', we get 

2a sech ymb 
Am = (- 1)" (14) 

avPm(A2 + pi) 

Consequently, the velocity of the fluid and that of the dust particles are 
respectively 

cosh Ax) + $ 2' (-1)"" w = ecut [$ - - 
cosh Aa 

,=o P" (A2 + pi) 

cOsh Ymy COS &x 
cosh y,b 1 

where C' indicates that the first term of the sum is to be multiplied by 4. 

Case (ii) (a) Increasing exponential pressure gradient 

Taking (- $-g9 W, W*) = [a, 4()0 Y), $*(x, y)] eut, 

where u is a real constant and a > 0, and proceeding as in Case (i), we obtain the 
velocity of fluid and that of dust particles respectively, as 
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(b) Decreasing exponential pressure gradient 

Now, we take 

( o  > 0) and proceed as above to obtain the expressions for the velocity of fluid and 
dust particles respectively, as 

1 sin ( A  - pm)a w = -  
av l2 cos l a  ( A - a, 

cosh ymy 
X- 

cosh ymb cos pmx - (1 - c*x), cos ha l2 # p i  

3. Flux and Drag 

The volume of fluid discharged per unit time over any cross-section of the cylinder is 
given by 

and the drag per unit length on the surface of the walls of the cylinder is given by 

where TZZ and T V Z  are the shearing stress components in z-direction on the surfaces 
x = a and y = b respectively. 

(i) Periodic pressure gradient 

Using the expression (15) for the velocity of fluid under periodic pressure gradient, 
the flux 'Q' and the drag 'D' are obtained as 

2u 2' tanh ymb ] Q = 4 eiut r$ ( l a  - tanh l a )  - - 
s av 

,=o B: Y", 

GCB 2ah2 2' tanh y,b ] D = - 4,t.i eiut [T tanh l a  + - 
av (24) 

=o B: y: 

when 1 h / is smaN : For small 1 h I , which implies small I y, I , we obtain the flux 
and skin friction drag as 
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where we have taken the dimensions of the cross-section to be small ; and 

tanh ha .I. ha and tanh y,b .I. y,b 

Since, for each in, 

the Eqns. (25) and (26) can be put in the following forms, on taking the reaI parts 
and retaining terms up to 0 ( I h 1%) only. 

QS = QS,C + Qs,a = [SR cos (at - T)]c + [-SMaIj-I COS (at + y)]a 

(28) 

DS = Ds,c + D,,a = [pSR* cos (at + T*)Jc + [pS(R* sin T*) 

where [ Ic and [ ]a denote respectively the clean viscous flow part and dusty viscous 
flow part of flux or drag, as the case may be; and where 

L = R cos T GT = Ij cos y 1 
Na/v = R sin T 

I 
1 = Ij sin y I 

R = (L2 + 11Z2a2/v2)t'2 
> (30) 

Ij = (1 + a2~2)112 1 

1 
,V = R* cos T* CPL = p_= (%)4 [ -&+,&I 

m=O rn 

1 Lo/b = R* sin T* a2M = 1' = ($)' [- + (26 - 1) n6 
84(6)! 

m=o 13, 3 
8uab T* = tan-' (2Lalbv); S = - -. 

V 

Here we have used the formula (Gradshteyn & Ryzhik12) 
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where Bn are the Bernoulli's constants. 

The velocity field for the dusty fluid for small values of 1 h 1 , deduced from 
(15), is 

where terms higher than 0 ( 1 A 1 2) have been neglected. 

When I h I is large : In case 1 h / is large, we have 

Neglecting terms of O( / h / -9 and higher, we obtain the expressions for the flux 
and drag as I 

QL = (So12v) sin at - (Sc/2v) f P-l cos (at f y) (34) 

DL = - 4pub Re (eZut/h) (Re = Real part of) (35) 

(ii) (b) Decreasing exponential pressure gradient 

After a little simplification, we can put Eqn. (19) as 

.,-n 2(- l)m+l cosh yf l  
w = eos ~ m x  + - 1 ] 

av h2 " cosh ymb 
, so  

(36) 

Using this expression, the flux and drag per unit length of the cylinder are got as 
00 

tanh ymb 
Q!=-- 8ue-at av [&ib(ha - tan la) 4- x' 

a ] 
m=O P m Y m  

00 

D' = - [,3 x' ymb - tan ha] 
avh 

,=o P",Y3, 

Similarly, we can get the corresponding expressions in the case of increasing 
exponential pressure gradient. 
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h. Further, if we put b = a in the expressions got above, the results for the flow 
through a cylinder of square cross-section are obtained. - 

ii 

4. Flow Between Parallel Plates 

Letting b + 00, we obtain from Eqns. (15) and (16), the velocities of the fluid and 
dust particles respectively for flow between parallel plates x = & a under the influence 
of periodic pressure gradient, as 

For small values of ] A ] when the distance between the plates is small, we have up to 
~ ( I A I * )  

The first part gives the velocity field for the clean fluid, up to zeroth order of I A j , 
whose profile, as it is well-known has the parabolic form. 

$. Deductions 

1 .  By making f + 0 in all the expressions, the dust particles are removed from the 
flow quantities and we regain the corresponding expressions for the clean fluid flow. 

2. It is observed that the velocity of the dusty particles is always smaller than that 
of the dusty fluid, while the latter itself is smaller than that of the clean fluid. 

3. The velocity of dust particles vanishes along with the fluid velocity on the boundary. 
This shows that the dust particles adherz to the boundary. 

4. From Eqns. (28) and (29), we note that the presence of dust particles in the fluid is 
to decrease the flux and increase the drag on the walls of the cylinder by amounts 

Q,,d = SMa  f cos (at  + y) (42) 

D ~ , ~  = pS(R* sin T * ) f  Pdl cos (a t  -I- Y) (43) 
/' 

respectively, which can .be expected from the physical considerations, qualitatively. 

Now, for small r ,  we have 

which shows that the additional drag due to the presence of dust decreases as r increases 
up to a critical level, given by rolt = 1/2/0. This agrees with Saffman's observation 
that, when T is small, which corresponds to the case of the dust being fine, the effective 
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kinematic viscosity is reduced. Also, for exponential pressure gradient the corres- 
ponding result is -rtcrit = Ijo SO that the critical value of T for periodic pressure 
gradient is 4 2  times greater than that for exponential pressure gradient. 6. 

Again, for large 7, we have 

where s = fe-I = K N / p  The additional drag Ds,a varies with 's' in the case of 
coarse dust. 

The convergence of the infinite series involved in the solutions can be easily 
established as id [ref. 1 I]. 

Long time after completing the solution of the above problem, the author has 
recently noticed that the problem of vibrating membrane with its edge vibrating in a 

, prescribed manner is similar to the one considered in case (i) above. If we, therefore, 
write h2 = - m2, Eqns. (9) and (10) become 

v2+ + ma+ = 0; (46) 

and the solution may be written, directly following Sethx3, as 

COS d m 2  - A: y 
+ = - -  

J 
cos hnx 

n=U ahn(mZ - A: cos 
- ~ 2 ,  b 

where 

An = (2n + 1) x/2a 

which agrees with the result in case (i) of periodic pressure gradient above. 

6. Numerical Results and Discussion 

With a view to have an insight into the behaviour of the various parameters involved 
in the expressions for.physica1 quantities, numerical work has been done and the 
results are presented in Tables 1 to 4 and Figs. 1 and 2. 

In Table 1 the variations of the clean fluid flux Q:' and the dusty fluid flux QS 

(Eqn. 28) and in Table 2 the variations of the clean fluid drag ~ f '  and the dusty fluid 

drag D, (Eqn, 29) against o are presented for different values of mass concentration of 
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. dust f. They show that flux increases with frequency parameter 0 both for clean and 
dusty fluids. Also, flux decreases when dust is added to the clean fluid and the 
decrease is more as mass concentration of dust f increases. Further, we notice that 
drag decreases with o for clean fluid as also for dusty fluid and that drag increases 
with f, though at high frequencies the increase is small. 

Table 1. Values of clean fluid flux ejc) and dusty fluid flux Q ,  against o for different 

mass concentrations of dust $. 

\ a 
\ = 6  8 10 12 14 16 

Table 2. Values of clean fluid drag Djc)  and dusty fluid drag D, against a for diffe- 

rent mass concentrations of dust f: 

Table 3. Values of the clean fluid drag D:) and dusty fluid drag D, against t for 

different mass concentrations of dust f. 
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Table 4. Values of velocities of clean fluid w::! and dusty fluid w,,, for the flow 

between parallel plates when the distance '2a' between them and the frequency of 
oscillation 0 are small. 

Table 3 shows the values of drag against t ,  from which it is noticed that drag 
decreases as time t increases. The rate of increase in drag with f is almost uniform 
for all t 

Table 4 gives the values of velocities of clean fluid wa",; and dusty fluid W P , S  

(Eqn. 41) for the flow between parallel plates. This clearly shows the reduction in 
velocity with the addition of dust, the dusty fluid becoming slower with increase in the 
value of f. The velocity for clean and dusty fluids reduces as 't' increases. 

From Fig. 1, we observe that the flux curves for the clean and the dusty fluids 
become closer with the increase in 0. The clean and the dusty fluid curves are closer 
for small f and are far apart for large j' when the frequency a is small. 

Figure I. Graphshows flux Q against C, where Q:') = clean fluid flux and Q, = 

dusty fluid flux. 
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X 

Figure 2. Velocities of clean and dusty fluids flowing between parallel plates. 

Finally, Fig. 2 shows clearly that the addition of dust reduces the speed of the fluid 
flow. The parabolic curve of the classical nondusty fluid becomes blunt at the mid- 
point between the parallel plates with the addition of dust, which shows that the dust 
has a damping effect on the fluid flow. 
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