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Conette Flow of a Viscous Electrically Cowlncting Fluid 
in a Porous Annnlus 

R&wd 24 April 1978 ; revised E I. October 1979 

Abstract In the present paper the author has studied the Couette flow of a viscous 
incompressible fluid under a transverse magnetic AeId in an annular space bounded by 
two porous coaxial cylinders which are moving with arbitrary time dependent 
velocities parallel to the axis. 

How through porous media is encountered in a broad range of scientific and 
engineering activity which includes such diverse fields as solid mechanics, filteration, 
petroleum engineering and transpiration cooling. In recent years, the problems of 
fluid flow in channels with mass transfer at the boundaries have attracted the attention 
of mathematicians and engineers because of possible nuclear aero-dynamics and rocket 
engine applications. Singhl has considered the problems of impulsive motion of 
viscous fluid contained between the two porous concentric cylinders in the hydro- 
magnetic case both in presence of radial and axiaI magnetic field. Muhuriz has 
considered the magneto-hydrodynamic Bow between the parallel porous plates when 
one wall has given an impulsive or uniformIy accelerated motion with suction at both 
the plates. Recently, Mathufl has considered the unsteady flow of a viscous incom- 
pressibIe fluid between two porous plates under a transverse magnetic field when the 
rate of injection of the fluid at the lower plate is equal to the rate of suction at the 
upper plate when the upper plate is given (i) uniform and (ii) impulsive motion. 

In the present paper, the authors have studied the Couette flow of a viscous 
incompressible fluid under a transverse magnetic field in an annular space bounded by 
two porous coaxial cylinders which are moving about its axis with arbitrary time depen- 
dent velocities. This type of problems have great Importance in the field of plasma 
physics as we11 as in astrophysics. The exact solution of the problem has been obtained 
with the heIp of finite Hankel transform which has an advantage over that of Laplace 
transform in the sense that laborious caEculations and complications do not arise. 

Tn fact, the general series solution of the problem for long straight channels with 
uniform- concentric cross section is given for all values of cross-flow Reynolds 
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number and Hartmann number. The assumptions made for solving the problem are 
as follows : 

(i) Initially, fluid and the cylinders should be at rest. 

(ii) FIuid starts moving only if the cylinde'rs are given time varying velocities 
about zf-axis. 

(iii) The rate of injection of the fluid at one cylinder is equal to the rate of suction 
of the fluid at the other. 

(iv) The two cyIiaders should be of uniform porosity. 

Strength of the imposed magnetic field 

p* Ho u(a~/pv)~P Hartman number 

magnetic permeability 

electric conductivity 

kinematic viscosity 

density 

axial velocity 

radial velocity 

radial velocity at the inner cylinder 

radial velocity at the outer cylinder 

avo 
R - cross-flow Reynolds number 

v 

a radius of inner cylinder 

6 radius of outer cylinder 

a b/a. 

Formulation of the ProbIem 

Let a ~d b be the radii of the inner and outer cylinders respectively. Taking centre 
of the cylinders as origin and %'-axis along the axis of the cylinders, a fmme of 
cylindrical polar system of coordinates is taken for referen* (r',  0 , ~ ' ) .  Let ur, U;, urn 

be the components of the velocity in the direction of r ', 0' and z' respectively. For 
the preseu~problern it is assumed that the pressure gradient is zero and flow is 
produced by the moiioe.d the cylinders which are moving jn 2'-direction. Since we 
have considered the motion of the cylinders in 2'-dimtion only, there is no displace- 
ment of the fluid in the direction of r' and 0' due to the notion of the cylinderst Hence 
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assuming the azimuthal component of the velocity to be zero, the equations of motion 
for the problem neglecting the electromagnetic induced effect, Pai4, are 

and 

where 

r = rr/a, z = z'la, t = t'vla, u = auz/v (4) 

and v = a ~ r / v  

are dimensionless variables. 

Since the flow is produced by the motion of the cylinders, let us assume that inner 
and outer cylinders start to move from rest with velocities +,(t) and +2(t) where C 1 ( t )  
and +,(t) are functions of time. Therefore, the initial and boundary conditions for the 
problem are 

Initial condition : 

u = O , v = O f o r t g O  ( 5 )  

Boyndary conditions : 

aVa 
= 4,(t), v = ---- at r = 1 

v 
1 

I 
) for t > 0 

avb 
u = +,(t), v = - at r - I 

(6) 

v J 

Solution 

In the present investigation, it is assumed that the rate of injection of the fluid at one 
wall is equal to rate of suction at the other wall and these rates are independent of 
time t and the axial position z. The condition that the rate of injection of the fluid 
at one cylinder is equal to rate of suction of the fluid at the other cylinder gives 

ava = b ~ b  (7) 
In view of uniform porosity, the axial component u is independent of z. Therefore 

Eqn. (3) reduces to 
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the solution of which under second oon'dition of Eqn. (6) is 

Substituting the d u e  of v from Eqn. (9) in Eqn. (I), we get 

Using the substitution 

it am 'be shown that the Eqn. (10) in the new variable al is 

and the initiaI and boundary conditions are 

t < O , w = O f o r  E < r < a  

Ltt denote the fmite Wankel of ru defined by 

J~ t t (p t r ) ,  Y~,,(pir) are the Bessel functions of first and second kind respedyely of 
- . order R/2 and pr is a positive root of the equation. 

Jlrf~In4 Y R I P ~ P C )  - Y ~ ~ P I Q )  J R , ~  P I )  = 0 117) 

Applying the finite HankcI transform define by Eqo. 115) and nsing the boundary 
conditions (141, the Eqn. (12) transforms to 

and the initial condition (13) transforms to 

Solution of Eqn. (1 8) under Eqn. (1 9) is 
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" = -  - f [ hid''' G - R / ~ $ ~ ( T )  - +I(T)]  exp (- (p:  + m y ( ,  - r))dr 
x JRI P( 0)  

0 

(20) 

Using the inversion formula for the Hankel transform, Tranter5 and the Eqn. ( 1  I ) ,  
we get 

t 

X 1 [JR"(P" o-R12 +AT)- $ L ( ~ ) ]  exp (- (pq + mP) (t - T)) dr 
JRI P( P C ~ )  

0 

(21) 
II 

the summation being over the positive roots of Eqn. (17), Eqn. (21) represents the 
most general solution of the problem. 

Special Case 

Cylinders moving with exponentially time dependent velocities. In this case let 

$l(t) = u1 e -k i t  and $,(t) = u2 e-kzt, (22) 

where u,, uz, Al and A, are constants. 
Substituting Eqn. (22) in Eqn. (21) and on simplifying, we get 

rRlzp; J : , ~  ( pi o) BR/ pir) 
d r ,  t )  = z 2 

J i , Z  ( P S I  - Jip (pic)  
i = l  

J R / ~ P ~ )  - - up C - R ' ~  - u1 t JRI z( ~1 c )  (p :+mZ--A , )  ( p : + m 2 - A 3  

x exp (- ( p :  + my) t I (23) 

To express Eqn. (23) in further simplified form, we note that the Fourier-Bessel 
expansion for a function f(r) over the range 1 to o is given by, Tranter6 .- 

00 

f (r)  = AzBR/r( per) (24) 
i= 1 
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where the summation is over the positive roots of Eqn. (17) and the coefficients Ac are 
given by 

Now expressing each term on R.H.S. of the following expressions in terms of 
Fourier-Bessel expansion (24) and making use of Eqn. (13, it can be shown that 

~ 2 .  P: JRIZ( P I )  J R I ~ (  ~ $ 0 )  B R I Z ( P ~ ~ )  

{ J i I z  ( p i )  - Ji12 (p ic ) )  { P :  + mZ 
i-- 1 

In view of Eqns. (26) and (27), Eqn. (23) can be written as 

- ulrR12 exp (-A,?) 
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The %ow, when imer cylinder is at rest and outer is moving with constant velocity, 
can readily be obtained by Petting u, and ha to be m o  in the above aquation. Thus 
substituting sr, = 0 = A, in Eqn. (281, we get 

r 

Figlut t. Velocity profiles when outer eyfinder is moving for m = 4 and R - 0. 
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Equation (29) determines the velocity of the fluid when outer cylinder is moving with 
constant velocity u, and inner cylinder is at rest. 

Discussion 

Equation (21) gives the general value of the velocity of the fluid for all values of cross- 
flow Reynolds number and Hartmann number. From this various particular cases 



Couette Flow of a Viscous Fluid in a Porous Annulus 6 1 

can easily be obtained for several values of &(t) and &(t) i.e. when either inner or 
outer or both the cylinders are given particular type of velocities. It should be noted 
that tjositive R means that there is injection of the fluid at the inner cylinder and 
suction at the outer cylinder and vice versa for negative values of R. 

Equation (28) gives the general value of the velocity of the fluid when cylinders are 
moving with exponentially time dependent velocities. From this, it is obvious that the 
velocity decreases according to increase in time and becomes zero when t tends to infinity. 

As a special case of Eqn. (28), when the inner cylinder is at rest and the outer 
is moving with constant velocity, the value of the velocity profiles is calculated which 
is given in Eqn. (29) and these values of velocity profiles are plotted against various 
values of R in Figs. 1 to 4. From these figures it is observed that with increase in cross- 
flow Reynold's number R the veIocity decreases. Also it is evident from these figures 
that the velocity increases with time and ultimately approaches to the steady state. 

Further, from Eqns. (28) and (29), it can readily be verified that with increase in 
Hartmann number rn, the velocity decreases. 

r 
Figure 4. Velocity profiles when outer cylinder is moving for m = 4 and R = 6. 
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