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Abstract. The effect of constant heat sources on fully developed free convection flow 
of a viscous fluid in a porous channel oriented in the 'direction of the body force has 
been studied when the walls are maintained at constant temperatures. It  has been 
found that both the velocity and temperature depend on the heat source parameter o: 

and the dimensionless group Q representing the free convection effects. 

Introduction 

The free or natural convection heat transfer has received considerable attention in 
recent years in view of its wide applications in the design of nuclear reactor, cooling of 
electronic equipments, aircraft cabin insulation and thermal storage system. Ostrachl'" 
has stpdied the laminar natural convection flow between vertical heated plates when 
they are kept either at a constant temperature or the temperature varies linearly along 
the plate. Rao3 analysed the corresponding problem with porous walls. Nanda and 
Sharma4 have extended this to the case of flow in a circular pipe. The present work 
deals with fully developed free convection flow in a porous channel including the effect 
of frictional heating, in presence of constant heat sources or sinks distributed uniformly 
in the fluid. As is usual in free convection flows, a linear density temperature variations 
has been adopted to express the body force term as buoyancy term. The case when 
both the walls are maintained at the same temperature has been discussed in detail. 

Formulation of the Problem 

Consider the fully developed steady laminar free convection flow of a viscous incom- 
pressible fluid between two infinite parallel porous flat walls of equal permeability, 
oriented in the direction of the body force. The x-axis is taken along one of the walls 
and y axis normal to it. Since the boundaries are of infinite dimentions in x-direction, 
we can in general, assume that the velocity and temperature both depend only upon y. 
The velocity field is taken to be (u, V, 0), where V > 0 represents injection at y == 0 
and suction at .Y = h, h being the distance between the walls, while V < 0 represents 
the vice versa. 
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The equation of continuity is identically satisfied while that of motion and energy 
take the form 

where D denotes the heat added due to constant heat sources, f  the generating body 
force per unit mass, C,, the specific heat at constant pressure, k the coefficient of 
thermal conductivity, p the pressure, p the coefficient of viscosity and p, the density of 
the fluid. 

The boundary conditions to be satisfied, are 

u = O , v =  V , T = T ,  a t y = O  1 
and L 

I 
(4) 

u = 0, v =; V, T = , T ,  a t y  = h J 

Following Ostrachl, the body force term can be expressed as a buoyancy term. In 
hydrostatic condition 

~ P U  P o f  - - = 0, 
ax 

(5 )  

Using this, the body force and pressure gradient terms in Eqn. (1) are 

p f - & =  (P -  PO)^ - ap1 (6) ax 

where p, = p - po. Further assuming a linear density temperature variation, we write, 
for small temperature differences, 

P - Po = - BP(T - To) 

Thus Eqn. (6) is simplified as 

where fz F. - f  and p is the coefficient of volumetric expansion. Also, a suffix 0 denotes 
the respechive quantities in hydrostatic state. 

With the help of Eqn. (8), the Eqns. (1) to (3) reduce as 
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and 

Dropping the pressure term as in Ostrachl, and making use of the transformations 

The Eqns. (9) to (1 1) now transform to 

and 
d2 T* 

where R(= Vhlv) and a( = pCp/k) are respectively the suction Reynolds number 
and Prandtl number. Also, Q(= aG@f,h/CP) is a dimensionless group where 

G(= @ f,h"T1 - To)/va) is the Grashof 's number and u 
Dh' ) is the heat 

source parameter. 
It may be pointed out that as the velocity field depends on the temperature as well, 

so the frictional heating term in Eqn. (14) must not be neglected, and thus the solution 
consists in solving the set of simultaneous differential equations (13) and (14). The 
boundary conditions (4) become 

U(0) = 0, U(1) = 1, -) 

and 
k 

T*(O) - Q, T * ( l )  - mQ, J 

where in = (T2  - :) is another dimensionless group with T, and T2 representing 
Tl - 

temperature on the lower and upper walls respectively. 

Eliminating T* between (13) and (14), we get 

The boundary conditions (15) in terms of velocity can be rewritten as 

Solution 

The equation (16) subject to the boundary conditions (17) is solved by the method of 
successive approximations. In order to develop the method, consider the equation 
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where Up denotes the pth order approximation to the value of U, satisfying the 
boundary conditions (17). The zeroth order approximation corresponds to p = 0 and 
is obtained by neglecting the viscous dissipation term in Eqn. (18). The fourth order 
ordinary linear differential equation in Uo thus obtained is solved by the usual method. 
The corresponding solution is 

The next higher approximation which includes the effect of frictional heating also, is 
given by the differential equation 

u:" - R(l $ a)  U;" + aR2U; = (U , )2  + QCC. 

Accordingly the solution is 

Qa 2Q2a2 
where, Kl = a, -k Qa(l -+ a ) ;  J z  - ( I  + a + $1 + -- 

Ra Rao2 Rs o6 

and a,, a,, a,, a,, b,, b,, b,, b,, are constants determined under the boundary condi- 
tions (17). 

The first order approximate to the temperature is 
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T,' = - U; + RU' 1 

2a a a eR(l+~)* 
eRq 3 e2Roq - 3e - = R20(l - o) b4eRu* - 2(2 - a) 3 4 

(1 + 4 

Skin Friction and Nusselt Number 

The skin friction at the walls can be calculated from 

Figure 1. Variation of U with r, for different a (Q = 3.0). 





Table 1. Skin Friction on the Walls. 

Table 2. Nusselt Number on the Walls. 
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rl 
Figure 4. Variation of T* with q for different R. 

conserve space the graphs and tables have been given for Q - 3, only. Here, the 
negative value of a corresponds to the case of sinks. 

Figs. 1 and 2 exhibit the behaviour of velocity and temperature for varying a and a 
fixed R while Figs. 3 and 4 depict the behaviour for varying R and fixed a. 

It can be seen that both velocity as well as temperature increase with increase in 
heat source parameter, reaching a maximum almost in the middle. For large sinks a 
complete reversal of flow pattern is observed and a cooling takes place between the gap 
which is more and more pronounced with increase in --a. For u = 0, i.e., the case 
without heat sources, our results reduce to that of Rao3 and thus, completely match 
with them. 

The skin friction and Nusselt number have been calculated for different a and R 
and given in Tables 1 and 2. 

It is found that the Nusselt number at the lower wall increases with increase in a for 
increasing Q. At the upper wall the behaviour is completely reversed. It is evident from 
Table 1, that the behaviour of skin friction is quite similar to that of Nusselt number. 
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