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On Unsteady Flow of a Dissociating Gas 
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Abstract. Lighthill's model of an ideal dissociating gas has been exploited to study 
three dimensional unsteady flows in the absence of dissipative mechanisms. Expressions 
for the tangent, principal normal and binormal vectors, curvature and torsion of 
streamlines, variations of pressure along streamlines and their principal normal and 
binormal have been calculated and dissociation effects have been studied. 

Introduction 

It is well known that in the temperature range 1000 to 7000°K dissociation is 
important while electronic excitation energy and ionization can be neglected. It is not 
possible to study the phenomena of dissociation in all its generality because of its 
complicated beha~iour. Lighthilll, however, has introduced the dynamics of a 
dissociating gas through an idealized model (known since then as Lighthill's model) 
which has proved to be very useful in various estimates of shock wave phenomena. 
The different aspects of shock waves in the case of inert gases have been thoroughly 
discussed by Thomas and other~z-~ who have studied a variety of problems regarding 
shock waves. In the present paper, we propose to exploit Lighthilks model to study 
three dimensional unsteady dissociating gas flows in the absence of dissipative 
mechanisms. The expressions for the tangent, principal normal and binormal vectors 
and the curvature and torsion of the streamline have been obtained in terms of the 
velocity components, pressure, density and the mass fraction variable. Variations of 
pressure along the streamlines and their principal normal and binormal are also 
obtained. It is shown that the dissociating character of a gas in the case of an 
unsteady flow is to decrease the pressure gradient considerably along the streamline. 
Also, from the relation connecting the vorticity components with gradients of 
dissociation variable and entropy of the system, it is shown that these components are 
slightly increased in unsteady flow as compared with the case of steady gas flows. 

Equations of Motion 

The fundamental equations of motion for an unsteady, three dimensional ideal 
dissociating gas flow referred to a system of rectangular coordinates xi arel*6.9, 
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continuity 

3 4- prur + p ~ 1 . j  = 0 (1) 
at 

momentum 

aUa + p ~ i ,  j u j  + p.1 = 0 (2) P a t  
energy 

state 

p = (I + 9 )  p RT. 

h  = (4 + 4) RT -4- Dq 

reaction rate 

where p, ui, p, h, q, R, T and D are density, components of the velocity, pressure, 
enthalpy, mass fraction, gas constant, temperature and dissociation energy per unit 
mass respectively. Also, the quantity W is given by 

where ' C is a constant, Po is characteristic density and a comma (,) in the above 
equations as well as in the following indicates partial differentiation with respect to xi. 
The internal energy e for the ideal dissociating gas is expressed1 as, 

e = 3RT + qD (7) 

where qD is the energy absorbed by dissociation. 

Let 

h , = & P + h  (8) 

where v2 = uiui and h, is the stagnation enthalpy. Obviously, in the case of unsteady 
flow the total enthalpy is not constant along the streamline. As a consequence of (4) 
and ( 5 )  we have 

Using (9) with (1) to (6), we get 
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2 
U s , j U z U j  - a, U j , j  Uz -- = - 

at 3 

ClO) 

where at is the 'frozen' speed of sound given by 

Y P  4 + q p  a : = - -  --- 
P 3 P 

where at is the 'frozen' speed of 

y being a function of q. 

Variation of Pressure and its Gradients Along and Perpendicular to the Stream Lines 

Let Ai ,  p1 and v i  be respectively the unit tangent, principal normal and binormal 
vectors at a point on the streamline where its curvature is K. Then, with the help of 
the well-known Frenet formulae and the Eqns. (2) and (lo), we have 

C L z = - -  K 

1 ap 
P at 

3 

(12) 

I 1 
v Z  = - --- KpvS efjkUj (13) 

where ei~ic is the usual permutation symbol. Further, using (6) and (10) in the 
equations resulting through the multiplication of (12) by A,, p~ and v i ,  we obtain the 
following 

1 I auZ I I 
- P A  - - - -  A. - - [ u c j  - -- ~ U T  

PV ' a  
- 

v .  at uT at 
MI" 

,'. 
a; 

+ ---- 
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aui 
p,tvi = - P a t  

where M ,  is the 'frozen' Mach number given by Mf 

the curvature K of the streamline at any point. If T be the torsion of the streamline, 
then using Frenet formula 

in (I), (2), (6) and (lo), we get 

"'I [a$ { K ~ V ~ U ~ U ~ , , .  - ~ j ~ r K , r  PV' 
'pi = 

a + Kv%jp,k - (log p) + KpvZurui T 
at at I 

which gives the relationship .between the torsion of the streamlines and various 
parameters of the dissociating gas. Avoiding repetition of the well-known differential 
geometric results and proceeding exactly on the same lines as ins, we obtain the 

dp pressure gradient 5 as, 
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dp- - - p g A i  + pv2(K' + K") - P  v  
d~ M; - 1  ( M f  - 1 )  

1 I - -  a; 

where K' and K" are respectively the curvatures of the curves in the congruences 
determined by the principal normals and binormals to the streamlines. It can be 

dp easily seen that the expression for - given by ( 1 8 )  reduces to that of8 in the case of 
ds 

a non-dissociating steady gas flow. The expression for pressure gradient shows that 
the effects of dissociation and unsteadiness in the flow is to decrease the pressure 
gradient considerably. 

Vorticity Components 

h 

The vorticity components Wk are given by 
A 

wk = e k ~ m U m , r  

Then from (4), (5) and ( 8 ) ,  we obtain 

which, after differentiation w.r.t. xi yields, 

Further, substituting for p,s from the relation, 

where S is the entropy of the system and using ( 2 )  and (19) we obtain 

The equation ( 2 0 )  shows that whereas the effect of dissociation is to decrease the 
vorticity components as compared to the case of ordinary gas flow, the unsteady flow 
increases these components slightly. 
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