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Abstract. The solution is given for the problem on the motion of a dusty gas under a 
rotating system of co-ordinates. The gas containing a uniform distribution of dust 
particles, occupies the infinite space abovc a rigid plane boundary. The motion of the 
dusty gas is induced by the motion of the plate moving with a velocity which decreases 
exponentially with time in a rotating frame of reference such that the plate and the gas 
are in a state of rigid body rotation about an  axis normal to the plate. The velocity 
fields for the dusty gas, and the dust particles along and normal to the direction of 
motion of the plate are obtained in closed forms. Finally, some velocity distributions 
are calculated with particular reference to the effect of rotation at different times, and it 
is found that with the increase of the value of the rotation parameter a, the velocity of 
the dusty gas along the direction of motion of the plate gradually increases while the 
velocity of the dust particle along the same direction gradually decreases. 

Introduction 

The theoretical study of two phase systems is an important prelude to understand many 
physical phenomena. For example, flows in rocket tubes where small carbon or 
metallic fuel particles are present, blood flow in capillaries, pneumatic conveyance of 
small grain-like particles. 

The dynamics of a dusty gas was formulated by Saffmanl in terms of a large 
-+ 

number density N(x, t )  of a cloud of undeformable spherical particles suspended in an 
incompressible fluid. In this formulalio~ the bulk concentration of the dust particles 
is assumed to be very small but the density of the dust material is taken to be large 
compared with the fluid density so that the mass concentration of the dust is an appre- 
ciable fraction of unity. A comprehensive review of the dynamics of dusty gases has 
been given by Marblea. Michael and MilleP have investigated the motion of dusty gas 
with uniform distribution of dust particles occupied in the semi-infinite space above 
a rigid plane boundary. Sone4 has considered the steady flow past a body fixed in a 
uniform flow of dusty gas. Rukmangadachari and Arunachalam5 have obtained the 
exact solutions for the flow of a dusty gas through a cylinder of triangular cross-section. 
Mitra6 has investigated the flow of a viscous incompressible dusty gas between two 
concentric co-axial circular cylinders. 
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The study of motion of a dusty gas in a rotating system ha$ some bearing on the 
pollution problems as well as on the motion of aerosol odtr the rotating earth. 
Gupta7 and Pop considered the boundary layer growth in a fluid *ith suspended particles 
in a rotating frame of reference. 

The present paper is concerned with the unsteady flow of a viscous incompressible 
dusty gas induced by the motion of an infinite flat plate moving $vith a velocity, which 
decreases exponentially with time in a rotating frame of reference: The dusty gas and 
the plate are rotating in unison with constant angular velocity !2 kbout an axis normal 
to the plate. The expressions for the velocity fields for the dusty &#is, dust particles and 
the clean gas along and normal to the direction of motion of the #late are obtained in 
closed forms. Some velocity distributions for the gas, particle a b  the clean gas are 
drawn for the times T = 0, T = 1 in the region 0 < y < 1 for diasent values of the 
rotation parameter w. 

Governing Equations 

We consider an infinite plate lying along the plane z = 0, and situated IQ a viscous 
incompressible dusty gas suspended with a uniform distribution of dust with a 
small bulk concentration. The motion of the dusty gas occupying the space t > 0 is 
induced by the motion of the plate moving with a velocity V . e-'?it in x-directfoh*in a 
rotating frame of reference such that the plate and the gas are rotating in unison wkh 
constant angular velocity $2 about z-axis. The horizontal homogeneity of the problem 
demands that all the physical quantities will be functions of z and t only. Then using 
the formulation of Saffmanl, the equations of momentum for the dusty gas along the 
axes of x and y in a rotating frame of reference are respectively, 

Similarly, the equations of momentum for the dust particle along x and y directions 
are respectively 

In the above equations u,, u,, u3 and u; ,  u;, U ;  are the components of velocity of the 
dusty gas and the dust particle at a point respectively, v is the kinematic coefficient of 
viscosity of the gas, p is the gas density, m the mass of a dust particle, K is the Stokes' 
resistance co-efficient which is equal to 6xpa, for spherical particles of radius a, 
p being the gas viscosity and No is the number density of the dust particles and is taken 
to be constant throughout the motion. From the equations of continuity of the gas 
and the dust particles, it follows that u, = 0 and ud = 0 everywhere in the flow field. 
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The bouaary conditions are 

SolMon of the Equations 

y,e  introduce the following non-dimensional quantities 

z y = =, where T ( - - - ) is the relaxation time of the dust particles. Then the 
JVT 

Eqns. (1) to (4) respectively reduce to 

- = -  aU + 2wv + f (us - u) 
aT ay2 

a~ a2v  - = - -  
aT ay2 2f.O~ + f (v. - v) 

mN0 where f ( = --p ) is the mass concentration of the dust particles and w (= QT) is the 

rotation parameter. The boundary conditions (5) transform to 

We choose the solutions of (6) to (9) respectively as 

Then the equations (6) to (9) respectively reduce to 
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(1 - X 2 )  Gp + 2wFp - G = 0 (15) 

The boundary conditions (10) transform to 

F =  l , G = O a t y = O )  + 
(F, G) 4 0 as y -c 00. J 

(1 6) 

From equations (14) and (15) we get, 

(1 - h2)F + 2wG 
Fp = 

I 
(1  - ha)% + 4w2 1 
( 1  - X2)G - 2wF 

+ 
Gp '= 

(1 - A2I2 + 4w2 
I 

J 
Then the equations (12) and (13) respectively reduce 

d2F + 

dya 
u F +  QG=O (18) 

d2G - + u G - Q F = O  
dy2 

(19) 

where a = (A2 -f) + f ( l  - X2)  
( 1  - A2j2 + 4w2 (20) 

and ~ = 2 a . [ l +  - X y z  + 4w2 1 (21) 

The solution of the simultaneous differential equations (18) and (19) under the 
boundary conditions (16) are 

F = e - B y ,  cos (Ay)  (22) d 

and G = - e-By  , sin (Ay), (23) 

where 

a 2 + I j a + u  A = [L-J" 2 7 
1 C (24) 

B = [Ju2 + 2 + - u J" j 
Thus, from (1 1 )  the velocity components of the dusty gas and the dust particles are 

obtained as 

u = e - B y  . cos (Ay)  . e-APT (25) 

v = - e - B y  . sin (Ay) . r A a T  (26) 

and 

(1 - X 2 )  . cos Ay - 2w . sin Ay r A ~ T  up = e - B v  . ( I  - A2)' + 4w2 
(27) 
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( 1  - A3 sin Ay + 20 . cos Ay 
e-n2r vp = - e-BY . 

( 1  - X2)" 4u2 

For clean gas f = 0 and so from Eqns. (25) and (26), the velocity components of 
the clean gas are obtained as 

and va = - e-Bcv . sin (Acy)  . e-A2r (30) 

where Ac and Bc are respectively the values of A and B in Eqn. (24) for a = ha and 
p = 2w. 

Numerical Results and Conclusions 

The velocity profiles for the dusty gas, dust particle and the clean gas along and normal 
to the direction of motion of the plate are drawn in the region 0 < y < 1 for times 
T = 0, 1, taking the parameters characterizing the flow as follows : 

ha = 0.8, f = 0.5, w = 0.05, 0.10, 0.15. From these figures the following points are 
observed : 

( i )  From Fig. 1, it is noted that with the increase of the rotation parameter w, 
the velocity of the dusty gas along the direction of motion of the plate gradually 
increases. (ii) But from Fig. 2, it is observed that with the increase of the rotation 
parameter w, the velocity of the dusty gas in a direction normal to the direction of 

Figure 1. Velocity distributions of the dusty gas along with the direction of motion of 
the plate. 
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Figure 2. Velocity distributions of the dusty gas in a directioa normal to the direction 
of motion of the plate. 

Figure 3. Velocity d i s t r i b ~ o n s  of the dust particle along with the direction of motion 
of the plate. 

motion of the plate decreases rapidly. (iii) From Figs. 3 and 4 we note that as the 
value of the rotation parameter w increases, the velocities of the dust particle along 
and normal to the direction of motion of the plate gradually decrease. 

(iv) For the clean gas, from Figs. 5 and 6,  it is observed that with the increase 
of the rotation parameter o, the velocities of the clean gas along and normal to the 
direction of motion of the plate gradually decrease. 
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(v) From Figs. 1 and 5, we note that the velocity of the clean gas along the direc- 
tion of motion of the plate at each point of the flow field is greater than that of the 
dusty gas along the same direction. In otherwords, due to the presence of the dust 
particles, the velocity of the gas decreases along the direction of motion of the plate. 
( v i )  From Figs. 1, 3 and 2, 4 we observe that the velocities of the dust particle 
along and normal to the direction of motion of the plate are respectively greater than 
those of the dusty gas along the same direction. 

"b 

Figure 4. Velocity distributions of the dust particle in a direction normal to the direc- 
tion of motion of the plate. 

Figure 5. Velocity distributions of the clean gas along with the direction of motion of 
the plate. 
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Figure 6. Velocity distributions of the clean gas in a direction normal to the direction 
of motion of the plate. 
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