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Imploding Detonation Waves
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Abstract. The problem of imploding detonation waves propagating through a gas
with varying initial density, is studied. It is shown that the consideration of varying
initial density affects the problem considerably incomparison to a uniform gas at
rest. An analytical expression for the pressure distribution in the neighbourhood of
the centre of symmetry has been found. ‘

Introduction

The problem of imploding cylindrical or spherical shock front propagating into a
uniform gas at rest is well known>2. Nigmatulin3, Welsh? and Teipel® have replaced
the shock front by a contracting detonation front propagating into a uniform
combustible gas. If the shock wave is replaced by a detonation wave, similarity
solutions cannot be obtained for a general energy release. It can be used only for
studying the flow field, if the detonation front is governed by the Chapman-Jouguet
conditions. The constant amount of heat is produced during the detonation process
and by adding this, the basic flow equations only be corrected.

We have considered the problem of detonation waves into a gas of varying
density and only the case at the Chapman-Jouguet point is of interest. The expression
for similarity exponent is determined and comparisons have been made with the values
for the detonation waves into a uniform gas at rest.

Flow Equations and Conditions at the Detonation Front

We assume that the undisturbed density p, ahead of the detonation front is given by
pr = ot * ' M

where p, and k are positive constants and r is the distance measured from the axis
(or centre) of symmetry. The basic equations for the unsteady flow, neglecting
viscosity and heat conduction effects, are
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where p, v, p, s are density, velocity, pressure, and specific entropy respectively and
¢ = 0, 1, 2 are related to the plane, cylindrical and spherical case respectively.

The heat release ¢ per unit mass of gas, for the unsteady flow following Welsh*
and Teipeld, is given by
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where T, C,, U, C, are temperature, sound speed, detonation front velocity and
specific heat of constant pressure respectively. Converging cylindrical or spherical
detonation waves become very strong near the point of symmetry. Hence the Eqn. (5)
can be simplified by retaining only the largest term. From the conditions for the
conservations of mass, momentum and energy at the strong detonation wave, we have
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where v denotes the ratio of specific heats. The suffixes 2 and 1 refer to conditions
just behind and just ahead of the detonation front respectively.

We introduce here the similarity transformations for obtaining the solution ..
so that all the physical quantities depend on
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where n is an arbitrary positive integer. A detonation front would then coincide
with the line y = 7, = const. The detonation front velocity is given by

U=2 ncyrra-am, . @®

Consequently the initial conditions are functions of v, and r only

po = L g o, o9
+ 1 '

P2 = Y*_Y“‘ P ©b)
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Solution

The following transformations are made for the pressure, density and flow velocity
distributions.

p = pyr¥-/m) P (y) (10a)
p = pr R(w) ‘ ~ (10b)
v = r"‘”"’V(n) (10c)

Introducing Eqgns. (10a, 10b; 10c) into Eqns. (2) - (4), we get the following set of
ordinary differential equations.
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Using a modified sound speed 4, given by 4% =y g- , we get the following two

differential equations for 4 and V.
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71;‘" = 1 [(n Cy g M V) — o2 A%] {A2Valy(1 — (I/n) — k + o)

ke — D+ 21 - (lln))] — [t = (1/m) (‘r V3 + 24%) — kA%
X (Cyqgtt i 4 V). (15)

with the initial conditions,

A= Y—jr—l nql® ¢, (16a)

and

V= _

n

T 2" Gy . (16b)
It can be easﬂy seen that the denominator of Eqn. (15) vanishes for the initial values.

Thus the numerator of Eqn. (15) has to vanish too for a finite derivative of ¥ which
gives us a formula for the determination of n
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For singularity. consxderatmns we follow thefsarhe way as Teipél5 did. The variable
y is eliminated from Eqrs. (14) and (15) by using

= nCiqgtin oo ' (18a)

and

Then remains now only one differential equation.
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with the initial conditions

v
Y+ 1
and
1
R v (20b)

~ There are several smgular points of Eqn. (19), which can be seen from its integration.
* Because we are interested in the detonation waves running towardﬁ the centre, the

integral curve has to pass through initial conditions (p. > and

Y+1’ Y+1)
centre (x = 0, ¢ = 0) which is the correct curve for the given problem and represents
the solution.

(Pressure Distribution

Evaluating Eqn. (9a) in combination with Eqn. (17), we can calculate the pressure jump
for the detonation front.. For v = 1.4 and k = 0.5, we obtain

¢ =1, Py S~ p—0:055 ' (r—o.388)
1

¢ = 2, ~ p-0-dae (r=0777)
P
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The values in the brackets relate to the case of uniform gas at rest. We assume that
at a certain initial radius » = r, and at ‘a certain time ¢ = f, the detonation front
has initiated its own motion by the Chapman-Jouguet velocity U, Hence from
Eqns. (8) and (9a) the pressure distribution can be given as

py C? ¥ ( r )zu-u/n»

Conclusions

Taking the initial front velocity U, = 2C,, the pressilre distribution has been shown
in Fig. 1. It is observed that there is a remarkable change in the pressure distribution
on account of varying density. - A- similar result is obtained for the temperature

“Table 1. ,Valueg, of n for different values k at y = 1.4

Tk ' o=1 v o =2
0 . 0.8372 0.72
0.5 0.9729 0.8182
1.0 1.1613 0.9473
1.125
1.3846
1.8
2.5714
S
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Figure 1. Pressure distribution.
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‘distribution.  The . detonauon"thh sphencal symmetry is much stronger in the"
neighbourhood . of " the centre than  the cylmdrlcal wave The values of n for
' different values of & are: shQWn in Table l'in the cases ¢ = 1 and ¢ = 2. The range
of k depends onyandfory = 1.4 it is in-the range, OQ k< 358 for 6 =1 and
0 k< 4.16 for 6 =2 It is found that n ‘increases consuderably due to the
increase m k The mcrease, howaver, is less for 6 =2 than that for ¢ =1.
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