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Abstract. The primary flow of dusty viscous fluid due to longitudinal 'oscillations of 
two concentric spheres is considered. The velocity fields for the fluid and dust par- 
ticles are determined. The pressure is evaluated and the drag on a sphere is calculated 
assuming that the frequency of oscillations is small. The oscillation of a single sphere 
is discussed. The presence of dust in the fluid increases the virtual mass of the sphere 
and the magnitude of the damping force acting on the sphere. 

1. Introduction 

Interest in problems of multi-phase flows has developed rapidly in recent years and 
several authors have already solved various problems1-4 using Saffman's model5 for a 
two-phase motion. I n  this paper, laminar motion of a dusty fluid between two con- 
centric spheres performing longitudinal oscillations is discussed. The velocity of the 
fluid and dust have been found exactly and the pressure field obtained for small fre- 
quency oscillations. The drag on a sphere has been calculated. Results pertaining to 
the oscillation of a single sphere are deduced. Some numerical work has been done 
and the results have been presented graphically and in tables. 

2. Formulation and Solution 

The governing equations of Saffmans, in the usual notation, are 

+ 
div u = 0 
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-.-
~+ divNv = 0

(4)ot

(6)

where

f = ~ is the mass concentration of dust
p

and

ES=~+ sine O

a'S rroT (7)
I a

, SIne 09

Let two concentric spheres of radii a and b (a < b) containing between them a
dusty viscous incompressible fluid perform oscillations along their common diameter
which is taken as z-axis (0 = 0), If (u, v, 0), (u*, v* 0) denote respectively the velocity

vectors of fluid and dust in (r, 0, ~) directions and if 27;/a be the period of oscillation
then the boundary condions are

(u, v) = (cos 0, -sin 0) Ue'.t (r = a, b) (8)

We adopt the convention that whenever complex expressions are quoted for physical
quantities only their real parts are understood.

Substituting into (5} and (6)

(.JI, .JI*) = {X (r, e), Y.*(r, 0)} e'.t (9)

we obtain

ES(ES -k2) X = 0

x

1 + ia't I

where

xx* = 1 + ia-r

When we assume the number density N to be constant and introduce stream functions
1!1 and t/i* for fluid and dust respectively, Eqns. (1)-(4), under the usual assumptions of
slow flow, reduce to
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Now, substituting X = X, + X2 into Eqn. (lo), we have 

Solving these, we obtain 

X = (XI + X,) eiut = eiut sin2 0 (Anr-" + Bn + Cnr11'Zn+l12(kr) 
n= 1 

+ Dnr"Xn+~,~(kr) P:) (COS 0) I (16) 

where ~ t ) ( c o s  8) is the Associated Legendre Polynomial of the first kind of order n 

and degree 1; In+l,2(kr) and KnoI2(kr) are the modified Bessel functions of the first and 
second kind of the indicated order. 

Imposing the boundary conditions (8), we get an infinite set of Eqns. to deter- 
mine the constants An, Bn, Cn and Dn. But, if we set An = Bn = Cn = Dn = 0 
(n ) 2) we will have the following four equations involving the four constants A,, B,, 
Cl and Dl, which we henceforth denote dropping suffixes. 

where 

L(kx) = Z31,(k~) + 2kx I;,, (kx) 

The constants A ,  B, C and D are evaluated as 

Ubsl2aSI2 
B = -  

A 
(ka) - Q,L,(ka)} 
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where 

Mi(kx) = 3K3/ n(kx) + 2kx Kj;, (kx) 

The stream functions and the velocity components for the dust and the fluid are given 
by 

For dust 

+ Dr112K3,,(kr)l 

U* = 2 cos 0 eiut(l + iar)-I [Ar-3 + Br-2 + Cr-3/Z13,2(kr) 

+ Dr-3pX31 (kr)] 

V* = - sin 0 eiui(l  3. iar)-l [ - Ar-3 + fCr-31a(13/2(kr) 

+2kr I,'l,(krj) + &Dr-3J2{K,l,(kr) + 2kr K;,, (kr)}] 

For fluid 

V =  - sin 0 eiut [- + $Cr-s12{13,2(kr) + 2kr (kr)) 

where the prime denotes differentiation with respect to the argument 'kr' 
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3. Small Oscillations 

When the magnitude of oscillation is small so that I k I is small, we have up to 
k 1,) 

(u*, B*, 0)  = ( 1  + i c ~ ) - l  (u, v, 0) (24) 
+ =  - sina 8 eiot(Alr-I + A2 + A3r + A4rS + A5r4) (25) 

u = 2 cos 8 eiot(Alr-3 + A2r* + A,r-I + A4 + A5ra) (26) 

v = - sin 0 eiot(- Airs + A,r-I + 2A4 + 4A5ra) 

Uab A, = - 
18 (a+b) ka 

III red tmms, wllen we neglect t c m s  oTO(: k(*), we have thc following expressions 
for thc velocily components, the prcssurc and the drag On thc sphere r = n 

nh(n -I- h) - nb(0 -I-ti)' 
-- - 
3r 3t" 

7a'b'(~ -I- h ) } ]  _I - - -  
27r" 

V/U ='- 3 sin ~ [ { l -  

&(a + b) + 7aaba(a 
+ b) }I + (kl + fk2)  {i ra + 6r 54r 

D.,t = - - 4zpu [12(a + b + b2/a) cos ct 
27 
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and Eqn. (32) for the drag can be thrown into the form 

D,,t = [GH cos (at - y)] ,  + [- GHfJW1 sin Y cos (at + B)ld 

where [ 1, and I d  denote respectively the cleanand dusty viscous flow parts of the 
drag; and 

a a k, = sin at; k1 = - 
VJ cos (czt t- $1 

a7 = J cos g; 12(a f b + bl/a) = H cos y 

a 
= J sin 8; - [2b(a + b)* + 3a] = H sin y 

v 

$ = Cot- = tan-' - 

4. Oscillation of a Single Sphere 

For the oscillation of a single sphere, r = a, in an infinite expanse of a dusty fluid we 
deduce the velocity, the pressure and the drag as 

* = sin Befut [A -1 + ~~c ( I  + + r3 r ) I  

where 

and p, is the pressure at infinity. The expression for the drag agrees with that given 
by Lamb6 but k2 is now as given by Eqn. (12)  



Dusty Viscozrs Flow Between Concentric Spheres 

The Eqn. (38) for the drag can be put as 

D, = M'Uo(k' sin ot - k" cos ot) 

where 

and 

M' - 4xa3p/3, 

is the mass of fluid displaced by the sphere. 

4. Numerical Results and Discussion 

Numerical calculations have been performed and the results presented graphically and 
in tables. 

Figs. 1 arid 2 show the components of velocity i, ; against the distance r in the case 
of oscillation of two concentric spheres of radii a = 1 and b = 2 respectively for the 

Figure 1. Variation of ; = ulU cos 0 across 
the annular space between two concentric 
spheres r = a, r = b. 

Figure 2. Variation of ; = v/U sin 0 across 
the annular spaces between two concentric 
spheres r = a, r = b. 
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value of the mass concentration of dust, f = 0.4 and time t = 5 secs. Fig. 1 shows 
that the clean fluid has greater velocity than the dusty fluid up to a value of r = 1.66 
roughly and then it falls. It is evident from Fig. 2 that the velocity of the dusty fluid 
is smaller than that of the clean fluid. 

Calculations of the components of velocity of the clean and dusty fluid performed 
for various values of t and for f = 0.2 have been omitted here to save space. 

Fig. 3 depicts the drag ratio Da,t/D of the dusty fluid drag to the clean fluid drag 
on the sphere r = a for the flow between concentric spheres. It is clear that the drag 
ratio decreases as time increases. 

In Tables 1 and 2 are shown the values of u and ; for certain values of t and r and 
for f = 0.4. It is seen that when r = 1.2 and 1.6 the numerical values of the 
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Figure 3. Variation of drag ratio Da, rlD of dusty fluid drag to the clean fluid drag 
on sphere r = a. 

Table 1. Values of; = u/U cos 8 for flow between oscillating concentric spheres : 
a =  l , b = 2 ; ( f = 0 . 4 ) .  

Table 2. Values of ;= v/U sin 0 for flow between oscillating concentric spheres 
a = l , b = 2 ( f = 0 . 4 ) .  
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dimensionless velocity ; is smaller in the case of the dusty fluid than that of the clean 
fluid. It is interesting to note that, in general, the presence of dust in the fluid has the 
damping effect on the oscillations. 

In TabIes 3 and 4 the corresponding results pertaining to the oscillation of a single 
sphere of unit radius are presented for f = 0.2. The pressure distribution is tabulated 

in Table 5 which shows that the dimensionless pressure is numerically large for the 

dusty fluid than for the clean fluid, at any time. The pressure p has a maximum at 
t = 2 secs., and a minimum at t = 6 secs. 

Table 3. Values of ri = u/U cos 8 for the oscillation of a single sphere in a dusty 
fluid. 

\ r  0 2 4 6 8 10 

t \ (Set) (sac) (SPC) (Set) (Set) (Set) 

f = 0.2 (dusty fluid) 

f = 0 (clean fluid) 

Table 4. Values of; = v/U sin 8 for the oscillation of a single sphere in a dusty fluid 
( f = 0.2). 

- 
f = 0.2 (dusty fluid) 

f = 0 (clean fluid) 

1.2 -0.1283 0.2975 0.2971 -0.1289 -0.3702 -0.081 1 
1.4 0.1956 0.2708 - 0.0420 0.2946 -0.125 1 0.2236 
1.6 0.241 8 0.1 382 -0.1634 0.2309 0.0324 0.2493 
1.8 0.1916 0.0128 -0.1673 -0.1377 0.0892 0.1 883 
2.0 0.1302 -0.00 19 -0.1312 -0.0726 0.0901 0.1237 
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Table 5. Values of p = 
P - Po 

bpU Cas o/a 
for the oscillation of a single sphere in a dusty 

fluid (f = 0.2). 

\ ?  
7 0 .. 3 6 8 10 

t\ I Sec 1 (Set) (Set) (Sec) (Sec) (Sec) 
-. -- 

f = 0.2 (dusty fluid) 

f = 0 (clean fluid) 

The values of drag 6 s  shown in Table 6 reveal the fact that a sphere experiences a 
greater drag in the dusty fluid than in the clean fluid. Now, the meaning of the two 
terms in the expression for the drag D, at Eqn. (40) can be seen from the following 
reasoning. The force required to move the sphere of mass M in the absence of fluid 
stresses if -MUG Sin ct.  Equation (40) shows that, in addition, a further force 
-M'Ukle Sin ct in phase with the acceleration is required. This arises because 
in the process of moving the sphere, fluid is necessarily moved as well. The quantity 
k'M' is called the virtual mass of the sphere, and depends upon the frequency in a very 
complicated way. The second term in the Eqn. (40) always opposes the movement of 
the sphere, and is thus a damping force out of phase with the acceleration. This is 
the force that would produce the decay of the oscillation of the sphere if left free. 

-D  
Table 6. Values of & = in the case of a single sphere oscillating in a dusty 

- ngUat 3 
fluid (f  = 0.2). 

\r 0 2 4 6 8 10 

t\. (set) (set) - - (set) (s=) (set) (set) 

0.2 39.6480 61.9974 -4.4754 -64.5364 -32.1377 46.3039 
0 37.0230 55.0893 -5.7695 -58.3625 -27.3410 42.8513 

The functions k' and k" are given in graphical form in Figs. 4 and 5 respectively 
against a for the values f = 0, 0.2 and 0.4. Both k' and k" tend to infinity as the 
frequency a tends to zero; they tend to 0 and 0.5 respectively as c tends to infinity. 
It is interesting to note that in the former case the dusty fluid behaviour agrees with 
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Q Q 

Figure 4. Variation of k ' against frequency Figure 5. Variation of k" against frequency 
o for different values of mass concentra- o for diffetent values of mass concentration 
tion of dust f (Eqn. 41). k f dust f (Eqn. 42). 

that of the clean fluid but in the latter case, that is, when G tends to infinity in the case 
of the clean fluid, for which f = 0, the functions k' and k" tend respectively to 0.5 
and 0. It is seen from Figs. 4 and 5 that as the mass concentration of dust f 
increases the curves of both k' and k" rise. 

We conclude that the presence of dust in the fluid has the effect of increasing the 
virtual mass of the sphere and the magnitude of thedamping force actingon the 
sphere. 
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