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The necessary conditions for the existence of minimum of a function of initialand final values of mass, positicn
and velocity components and time of a multistage rocket have been reviewed when the thrust levelsin each
stage are considered to be bounded and variation ingravity withheight has beentakeninto account. The nature
of the extremal subarcs comprising the complete extremal arc has beenstudied. A few simple examples have been
given asillustrations.

There have been various studies on the optimization process for a single stage vehicleS. In a
recent paper Leitmann® solved the general problem of extremising a function termed as the “‘payoff”
or ‘‘performance index”’, and dependent upon the initial and final values of mass, position and velo-
city components and time of a single stage rocket, and derived the necessary conditions for the existence
of such extrema and the nature of the extremal arc. The problem was treated as a variational
problem of the” Bolza-Mayer type with limitations imposed on controls. Recently the author’ applied
the variational calculus to solve the general problem of extremising a given ‘‘payoff” for a multiple
n-stage rocket moving in vacuum. In the present paper the problem of multistage racket has been
‘generalised to include the case when the engines of various stages are capable of delivering all mass flows
between a lower limit and an upper limit, i. e., the thrust of various stages are considered to be limited and
variation into gravity with height is accounted for. The necessary conditions for the existence
of a minimum ‘‘payoff”’ and the nature of extremal subarcs in various stages comprising the complete
extremal arc have been studied. A few simple illustrations have been given. ‘

EQUATIONS OF MOTION AND FORMULATIONOF THE PROBLEM

The motion of a n-stage rocket is governed by the following differential equations.

- CiBi . ' 3)
U= cos 0; r t=1,2....,n

0B . 2h

v = ~—m—fz—s1n05—-g0 (1 — - (4)

m; + Bi =0 o (5)
where « denotes a horizontal coordinate ; & a vertical coordinate ; u and v the components of velocity,
m the mass ; 0 the inclination of flight path with respect to the horizon ; g, the acceleration due to gravity
at sea level ; » the radius of earth ; C' the equivalent exit velocity of a rocket engine and f# is the mass
flow. The dot sign denotes a derivative with respect to time. Since the mass flow rate is assumed to be
between two limits, i. e.

* *® ,
Bi<Bi< B v=12,.....1
we can replace it by the equality constraint.
L . ‘ '
(B,—-ﬁ,)(ﬁ, —«ﬂ,’)-—-0€,‘2=0 9=12,....,1n (6)

where «; is a real variable. '

The system of equations (1)—(6) contains eight physical variables z, &, u, v, m;, s, 6; and «,
for any particular stage and there are six equations connecting them. Thus there are two variables say

Bi and 6; for any particular stage which can be controlled and hence are called control variables,
the other five quantities 2, , «, v, and m; being termed as the gtate variables. Therefore the variational
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~ problem is formulated as follows : In the class ofkfunqtions (), b (¢), w(t) v (), mi(t) B: (t) and o ()
which are consistent with equations (1)—(6) and gertain prescribed end conditions, it is required to find
that particular set which minimises a certain funetion of the form :

T =T [ () B (to), 0 (o), (1), tos % (8, B (1), (1), m (47 1] \ (")
Let us now combine the equationg (1) to (é) to form tli-e'f(;liowing auxiliary function for the nth stage.
FiE)\w;(:b—u)-l— A;,.-(l;——'v) -+ Aui (’t.t-— %& cos 0;) + Ay [ v + 9 (1— 2—:&)
T TP P TN S
= T SO A (i 4 B3) + A [ (Bi - B (Bi —Bi) — | 7 ®

P=1,2 ... ,n
where A, Ani » Aui s Ao Ami and Ag; are undetermi@ed Lagrangian multipliers and are functions of time
since the constraining equations must also be satisfied at all points of the trajectory. .

‘EULER-LAGRANGE EQUATIONS

A necessary condition for J to be minimum is th?.t‘tﬂe extre}mél path must not (;niy satisfy equations
(1) to (6) but also the Euler-Lagrange equations given by - . ,
L a ( Fi\ _ 3k
a\az; | 2Z;

=12 ., 0 ) 19)

where Z; are the problem variables of the stage under consideration, i. e. @, h, u, v, m, 0, g and «. The
Euler-Lagrange equations for the given stage for the present” problem may therefore’ be written
explicitly as : : R , T

Ay =0 ’ - | | | (10
s = — a2 g, S
A = -— A o I _ I {12)
i = — N , ‘ ; | | (13)
'mf'= Aui —%— cos 0; 4+ Ay % éin 6; | o | : | o (14)
0; O;f‘()\..;sinﬁ.-—hvscosﬂf) k | R  (15)‘ :
0 = —Ma 2 qos b — hy o sin b w4 Bi—of) (16)
Agio; =0 o ' ‘ | ' | R {17).

These equations and the subsequent equations will hold good for each stage separately and therefore
for the gake of convenience the subscript ¢ will be dropped. From equation (15)

tan § = N - R - (18)
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FIRST INTEGRAL

Since the function F does not contain the independent variable ¢ explicitly, a first integral of
the Euler-Lagrange equations can be readily written with the help of

S
( 3—13Z’J

O”—I—A u—l—)\;,'v—i-)«u% 08 6 -+ A, [@smo——qo(l—-g?)]—,\,nﬂ:o (19)

where 0' is an integration constant having different values in dlﬁerent stages

eeeee

TRANSVERSALITY CONDITION

Transversality condition of the problem, which glves changes in boundary conditions as also change
in J must be specified and is given by

dJ —I—[ A dz 4+ Ay dh + Ay du ,—.{—»/\v,‘,‘dv—i-)t,,,dm—-C"dt]t,; =0 (=0)
From here we obtain the following boundary conditions of the problem o
9/ aJ 1 3J ad
A (b = — =2 , M fty) = — "o Aty = Mt
W= @ MY | MY T e MY e
- o ' RN 3 ’
M) = — —& () = — : M(l) = —o L Aoty = (21)
* o) au (t) ) =— 3 (t) % M) = 5 @ =% |
3J e : T L aJ |
) = — ——F00—, C'(t,) = wlt) = Oty = — —=—
Am {to) ity * ¢ (t) 3t J Anlty) am(t) C'lyyy = 9t J

CORNER CONDITIONS

The boundary conditions on the Lagrangian multipliers at staging point or at any point where the

F .\
thrust becomes discontinuous are derived from the corner condltlons 1. e. aF/aZ and ( —F - 2~a—- Z, :
must be contintous at such points. TFor the present problemif#’s {7 =1, 2,...., (n—1)) are the
msta.nts where staging takes place, then - '

' A (6) = 'Aws+1 ()
Mg B) = Mgy (8)
i () = i 14 (B)
Aoi () = doi g (&)
i (6) = iy (8)
and
. 0 '
[ Auith -+ Api 0 — Ay To (1—" Th)’—)\m'o Bi + C'B ( Aui €08 0; 4 Ay sin 6; ) ]
4
2h
= [ My @ Mig g = ity o ( l— == ) = Amigy Bitr +
o: . , .
+ -—’;—l—éi-l‘( Mitqg €080, + Augq sin G4y )]
b T : t
i=1,2,.... (n—1 L (22)

Thus the Lagrangian multipliers /\v, A;,, Au, Ay, An arecontinuous across staging and hence continuous
throughout the period of flight. Therefore from (18) We see that there 1s no discontinuity in the angle.
0 at the staging points.
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WEIERSTRASS CONDITION

A pécessary condition for the minimum value of J is
- E=>0

where
oF
39Z;

R R
E = F(Z;, Z;) — F(Z; Z,-)——Z (Zj—~Zj))
j=1

‘Here ;¢ denotes functions subjected, to finite admissible variations. This on evaluation gives

T 1
Kﬁ.ﬁt>Kﬂ;ﬁi ’b.=1,2,....,n (23)
where o : | |

C; . 1

K,91.=_m_.()\ueose—l—)\,,sm0)—z\m ‘ . ‘
: ¢ .:1 2...., 24

oo 1 1 r@ T " 4
Kﬂi:_()\ucos()-*—)\vsm9>—)\m

mi J

Equation (23) must be satisfied for all admissible variations, not all zero.

BURNING PROGRAMME

Differentiating equation, (24) with respect to time and simplifying by making use of “Euler-Lagrange
equations, we obtain. ‘ :

{ —

I{‘ﬁ'.=——k_oi( )\xcoso-{—)\;.siné?) . ; (25)

)

From (17) we observe that the extremum arc is discontinuous and we can have subares of the following
type: ' : )

eithez _ (5) g # 0, @ = »0

or (H@) Ap=0,  a#0

T.he first possibility implies that either B = g* or B = B** while the second possibility means that
Kg = 0, i.e. Kpg = 0 which is incompatible with (25) and accordingly the first possibility is forced
meaning thereby that only subarcs of minimum or maximum thrust can exist in the various stages and
there is no subarc flown with intermediate thrust in any one of the stages.

SEQUENCE OF SUBARCS

Since the possibility of intermediate thrust subarc is ruled out, we have now to determine the
conditions for the existence of minimum and maximum thrust subarcs. Now whenever B = B* or ¢
' ¥
B = B**, the condition (23) must hold all along the extremal arc, which means that when Kz = K Bs
then

Kp<0 B =p*
: , 126)
Kg>0 p=p*
’ T
But when Kg# Kg and B = B then
' T
Kg> Kg
, S t ot
i.e. Ay o8 6 + A, sin 8 > Ay cos 0 + A, sin @ ' 27)

72



Pawakrsy : Optimization Problem of Multistage Rocket

implying that for all admissible variationsin 8, the value of 6 should be such'that (A, cos 8 + A, sin 6)
is always maximum. Thus we conclude that when Kpg changes sign then there is a change in the
nature of the thrust programming in any given stage and the arc is of maximum thrust if Kg >0 and
- of minimum thrust if Kg < 0. Hence Kpg is the quantity whose behaviour determines the nature of
the extremal arc in the various stages.

‘Now as a consequence of the last equation of (22), we find that '
(Kp; Bi)i = (K131;+1 B; +,1)ti / ’ (28)
Since Bi’s are always positive, this shows that at the staging point Kpg; and Kg; , 1 are of the same
s'gn and hence there is no change in the characteristios of the thrust in the transfer from one stage to the

other, i. e. the next stage takes over with the same kind of thrust as that of the final point of the
previous stage. - \

ILLUSTRATIONS

We will illustrate the above by taking a few simple examples of vertically ascending two stage rocket.
The constraining equa’ ons in this case are given by

7]1 =7
. : (29)
mi + Bi =0
B (B — B) — o —
| | (ﬁ’t ﬁi) (ﬁa B@) % Ji=1,2
The auxiliary function is given by B
. Qh 01 ﬁi . .
+ Ag [(ﬁi — R} (B — Bi) — 0'-52] =0 : (30
The Euler-Lagrange equations are A
Ao +d= 0 ‘ (31)
i 2
A = — f" Ao (32)
C; fi
A = 7;1,,2 o (33)
C; N ’»Ah o x AR N o " o
—_ m; v+ﬁ Bi —B,——Q‘B, + A =0 . (34)
gy =0 (35)
The transversalify condition 1s
i Do ‘ £
dJ+[Avdv +7\hdh+)\mdm,'-——0,'dt]t = 0 (36)
. - ': k V:J_ - (. o
The first integral is o
Md M h A Ammy =0 | (37

From (35), we see that either Ag =0 or a; = 0. Ag = 0 implies subarc flown with variable thrust
while «; = 0 means that the thrust is either maximum or minimum,
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Now (31) and (32) may be integrated to give

Ay (t) = Mo (t,) cosh o (t, — 1) +- M lly) sinh w (¢, — t)> \‘
‘ ' / @ (38)
M (1) = @ Mo (t) $inh o (b — £) + Aq (&) cosh @ (fy — £)
where - \ = 29
‘ | 4

Now in order ta draw some conclusions it will be advisable to take gravity as canstant throughout the
flight period and in that case the set of equations (38) will reduce to .

A (t)=e
)=l o= § *9)
where e is an integration constant. '
In the following examples we will take the minimum thrust subare to be coasting subare, i. e. §* - 0.

 Ezample 1—Maximum Final Height. Cee
" In this case J = —  (t3)
~ The boundary cenditions of the given problem are

J’ h =y J v =,
l=ty=0 3 v= v;, t = t, (unspecified)

- LT =Ty Lm = m,
Since the final time is nat prescribed and with the aid of prescribed boundary conditions, the transversality
condition (36) leads to } ’
O(ty) =0, (ls)=0
In this case therefore ¢ =1 4
Also here ‘ [
C; '

m;

K= — t=1,2 (40)

This shows that K, and K, both have only ane zero, i. e. in each stage there can only be one corner point
and hence almost two subarcs in each stage. If we integrate (40); we have

0; m »
Ei= i 108 - B = B** (41)
Ki= ch‘,—(tc.--—t) Bi=0 (49)

where subscripts C; (i = 1, 2) refer to the instant of the corner point. Now if §; = g** then obviously
from (41) K; - 0 and if B; = 0 then from (42) K;<C 0. Also at the final point (¢ = #,) only (42) can hold
since ¢, .- lc, ; i.e. the final point is reached with a coasting subarc.  Again since in each stage there can
be only one carner point, we see that for the first stage there can be two possibilities

either (1) By = B** Sty
or (ii) B1 = 61** to <t toj. (43)
By=0 e Lt ‘

But since

(x8,8), = (Eme),

74



TAWARLEY : Gptimizatién Probiem of Multistage Rocke}
- we observe that the following corresponding subares are possible in the second stage =
DB =R" h<il, /=0, i< (@) =0, 4<iKh

| Fig. 1 illustrates the possible optimum controls associated with the problem of achieving maximum final
height.

Example 2—Maximum Final Velocity.
 In this case J = — v (t,)

The prescribed, b‘oundary\ebnditions are

[ h=h,
t=1t,=0 5 v =0 | "t = 1, (unspecified) {m = m,)
L = m,

Since the final time is not preseribed and ma.kmg uge of the given boundary conditions the transversality
condition (36) gives )

Clt =0, M(=0 Ml)=1 T

Therefore (39) implies that e =0 | |

Also here k - Kp=0 (1=12)

i. e. Kp; is constant throughout the flight. .

Also making use of the’ﬁrst integral (37), we obtain at the final point
Ba (t5) K, (12) = g, 1. e. Kg, (f2) > 0

and hence the final point is reached, with a maximum thrust subare.

Now sincs Kg has no zero in a given sfage, the optlmu_m subarcs to achieve the given mission must be of
the form

B, = B** 0t tﬂ ,
o L (45)
‘»ﬁz»,z /82** t]_ << tgf '
The optimum control associated with the problem of maximum final velocity is indicated in Fig. 2. '
Example 3—Maximum Payload ¢r Minimum Fuel Consumption.
In this case J == — m (t,)

. e o
___3_‘_,. f———— | 2 l
1 I i |
: - L | :
| = ‘ !
e ‘ b -l g I
4 | “ ' i |
| .
*
i { '
- ! |
| < ! |
Q : : Q :
: i :
I f |
1 i 1
i i 1
’ | S + i . — 1 —
kot : Ly o t t.
e ? g () . 1 rd
t ] : t .
Fig. 1-—Mass flow rate versus time for a two- sbage rocket ‘Fig. 2—Mass flow rate versus time for a two-stage rockel
for achieving maximum height. for achieving maximum velocity.
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The boundary conditions are specified by

[ h=h .
t=1,=0 5 v =1, ¢t = t, (unspecified) { b = hy}
7 \ M= My N .
Since the final time is not specified and with the help of the given boundary condltlons we obtain
: Ct)=0, Am (tg) =1, Ao (ty) =0 (46)
Also in this case \
Ci
M=ce, M=ce(—1), Kﬁi=—“N“Am (47)
Therefore
Kg;, = W‘ ely

Thus Kg, does not change sign during the stage and hence cannot be zero more than once in any stage.
Also at the final point

Kg, (t;) = — 1
Therefore at the final point K B, is negative, i. e. B, (t;) = 0 and hence the ﬁna.l arc is & coasting subare.

Now making use of the first integral we obtain
\ 2 (tz

e

N’

v (tg) = (48)

But as already observed that final point is attained, with a coasting subarc therefore (48) implies that the
velocity is zero at the final point. Now we make use of the relation

(KBL B].)tl (Kﬁe B2t

We have already seen tha.t Kpg, and Kp, cannot have more than one zero each and, therefore for the first
stage there can be two possible modes of propulsions, i. e.

either (1) Br-— B ** et ty 1 v
or o (i) By =pB** < TS Ly , (49)
'  B=0 te, St ty j
The corresponding modes of propulsion in the second stage will be
O B=8* 4<i<ly )
Bs=10 AT A : (50)
(@) Bp=0 H<ISHh J

Thus the possible modes of operation to achieve the given mission are the same as illustrated in Fig. 1.
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