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The neoesssry conditions for theexistenceofminimumof a function of initial and final values of mass, positirn 
and velocity components and time of a multistage rocket have been reviewed when the thrust levels in each 
stage are considered to be boundedandvari~tionin~ravity with height has beentakenintoaccount. The nature 
of the extremal subarcscomprising thecompleteextremal arc has heenetudied. A  few simpleexamples hsvr been 
given as illustrations. 

There have been various studies on the optimization process for a single stage vehicle*-5. In a 
recent paper Leitmann6 solved the general problem of extremising a function termed as the "payoff" 
or "performance index", and dependent upon the initial and final values of mass, position and velo- 
city components and time of a single stage rocket, and derived the necessary conditions for the existence 
of such extrema and the nature of the extremal arc. The problem was treated as a variational 
problem of the Bolza-Mayer type with limitations imposed on controls. Recently the author7 applied 
the variational calculus to solve the general problem of extremising a given "payoff" for a multiple 
n-stage racket moving in vacuum. In the present paper the problem of multistage racket has been 
generalised to include the ca,se when the engines of various stages are capable of delivering all mass flows 
between a lower limit and an upper limit, i. e., the thrust of various stages are considered to be limited and 
variation into gravity with height is accounted for. The necessary conditions for the existence 
of a minimum "payoff and the nature of extremal subarcs in various stages comprising the complete 
extremal arc have been studied. A few simple illustrations have been given. 

E Q U A T I O N S  O F  M O T I O N  A N D  F O R M U 1 , A T I O N  O F  T H E  1 ' R O R L E h f  

The motion of a n-stage rocket is governed by the follawing differential equations. 

X = W  1 (1) 
X = v  I (2)  

CiBi  
2)= - 

2h 
sin Bi - go (1 - -) 

mi T 

where z denotes a horizontal coordinate ; h a vertical coordinate ; u and v the components of velocity, 
m the mass ; 0 the inclination of flight path with respect to the horizon ; go the acceleration due to gravity 
at sea level ; r the radius of earth ; C the equivalent exit velocity of a rocket engine and /? is the mass 
flow. The dot sign denotes a derivative with respect to time. Since the mass flow rate is assumed to be 
between two limits, i. e. 

we can replace it by the equality constraint. 

where ie a real variable. 

The system of equations (1)-(6) contains eight physical variables x, h, zc, V, nai, pi, ei and cc, 
for any particular stage and there are six equations connecting them. Thus there are two variables say 

and Oi for any particular stage which can be controlled and hence are called control variables, 
the other five quantitim 1;, h, u, v, and rn$ being termed as the atate variables. Therefore the variational 



problem is formulated as follows : In the class of functions x ( t ) ,  h ( t ) .  u (t), v (t), mi (t,, pi ( t )  and ad (t) 
which are consistent with equation8 (1)-(6) and oertain prescribed end conditions, it is required to find 
that particular set which minimisea a certain fuaotion of the form 

J = J r x (to), n (to). v (to), (to), to, . (tf), h (tf), v (tl), m (tf i  tji (7) 
Let us now combine the equations (1) to (6) to form the following auxiliary function for the nth stage. 

Ci Pi * 9 ++ -- sin 0i I + h i  (k + pi) + +ji [ ( t i  - pi) (pi - pi) - xi2 
nb (8) 

where Adi , Ahi , A? ., Avi Am, and Afii are undetermined Lagrangian multipliers and are functions of time 
since the constraining equations must also be satisfied a t  all points of the trajectory. 

A necessary condition for J to be minimum is that the extremal path must not only satisfy equations 
(1) to (6) but also the Euler-Lagrange equations given by 

where Zj are the problem variables of the stage under consideration, i. e. x, h, u, v, m, 0, p and a . The 
Euler-Lagrange equations for the given stage for the present' problem may therefore be written 
explicitly as 

o =  - AWi sin Bi - A,< cos Oi 
mi 

Ci c i  ++ + 0 =-  A, - oos 0, - h, sin 8, + 1, + Agi (p i  + pi  - .pi) 
Wb! 

These equations and the subsequent equations will hold good for each stage separately and therefore 
for the sake of convenienoe the subscript i will be hopped. From equation (15) 

A, 
tan 9 = - 

A* 
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F I R S T  I N T E G R A L  

Since the function F does not contain the independent variable t explicitly, a first integral of 
the Euler-Lagrange equationr~ can be readily wri t te~ "with the help of 

where C' is an integration constant,-having different values in different stages. 
s t c e  

T R A N S V E R S A L I T Y  C O N D I T I O N  

Transversality condition of the problem, which gives changes in boundary conditions as also change 
in J mu& be specified and is given by 

From here we obtain the follswing boundary conditions of the problem 

C O R N E R  C O N D I T I O N S  

Thp. boundary conditions on the Lagrangian multipliers at staging point or at any point where the 

( a 3  
thrust becomes discontinuous are derived from the corner conditions, i. e. a F / a i j  and - F + E - ij) azj 
mu& be continuous a t  such points. For the present problem if ti's (i = 1, 2, . . . ., (n - 1)) are the 
instants where staging takes place, then 

(ti) = + 1 (4) 
Ahi (ti) = h i  4- 1 (ti) 
Aui (ti) = Aui 2- 1 (ti)  

A t i  (ti) = A* + I (4) 
Ami (ti)  = L i +  1 (ti) 

and 

i = 1 ,  2,. . . ., (%-I)  (22) 

Thus the Lagrangian multipliers A,, Ah, A,, A,, A, areco~ltinuous across staging and henoe continuous 
throughout the period of flight. Therefore from (18) we see that there is no discontinuity in the angle 
Oiat the staging points. 
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W E I E R S T R A S S  C O N D I T I O N  

A necessary condition for the minimum value of J is 
E > O  

where 

t .t 
E =p(zj ,Zj) -F($,  %)-s jot  zj - zj) 7 

Zj 
j= 1 

Here ;i' denotes functions subjected to finite admissible variations. This on evaluation giver; 

t t 
Kg, 18,. 2 Kg,h i = l , 2  ,...., n (23) 

where 

ci ~g~ = -( ~ c o s e  +  in e ) -A ,  1 
mi 

t t t i = l , 2  ,...., 12 

KP. 2 2 (i.cose + n. sin e ) - A ,  1 
mi 

Equation (23) must be satisfied for all admissible variations, not all zero. 
b 

B U R N I N G  P R O C R A b f M E  

Differentiating equation, (24) with respect to time and simplifying by making use of Euler-Lagrange 
equations, we obtain. 

I , 

l i p= - -  '' ( cos e + AA sin e 
mi (26) 

From (17) we observe that the extremum arc is discontinuous and we can have subarcs of the following 
type : 

or (ii) hg =: 0, a # 0 

The first possibility implies that either B = /I* or /3 = /I** while the seeond possibility means that 
Kg = 0, i.e. Kg = 0 which is incompatible with (25) and accordingly the first possibility is forced 
meaning thereby that only subarcs of minimum or maximum thrust can exist in the various stages and 
there is no subarc flown with intermediate thrust in any one of the stages. 

I 
S E Q U E N C E  O F  S U B A R C S  

Since the possibility of intermediate thrust subarc is ruled out, we have now to determine the 
conditions for the existence of minimum and maximum thrust subarcs. Now whenever /3 = P* or 

t B = B**, the condition (23) must hold all along the extremal arc, which means that when Kg = Kg, 
then 

But when 
t t 

Kg # Kg and /3 = /3 then 

t 
Kp 2 Kg 

t t 
h, cos 0 + A, sin 8 2 h, cos 0 + A, sin Q 
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implying that for all admissible variations in 8, the value of B should be such that (h, cos 0 + A? sin 9)  
is always maximum. Thus we conclude that when Kg changes sign then there is a change in the 
nature of the thrust programming in any given stage and the arc is of maximum thrust if Kg > 0 and 
of minimum thrust if Kg < 0. Hence Kg is the quantity whose behaviour determines the natixre of 
the extremal arc in the various stages. 

Now as a consequence of the last equation of (321, we find that 

( K a  Pi)& = (Kpi + 1 Pi + l)ti 
Since pi's are always positive, this shows that a t  the staging point Kp6 and Kp; + are of the same 
s'gn and hence there is no change in the characteristics of the thrust in the transfer from one stage to the 
other, i. e. the next stage takes ever with the same kind of thrust as that of the final point of the 
previous stage. 

I L L U S T R A T I O N S  

We will illustrate the above by taking a few simple examples of vertically ascending two stage rocket. 
The constraining equa;'ons in this case are given by 

The auxiliary function is given by 

The Euler- Lagrange equations are 

(SO) 

hg a, = 0 

The transversality condition is 

The first integral is +. - 

Prom (35), we see that either Ag = 0 or mi = 0 . Ag = 0 implies subarc flown with variable thrust 
while X i  -: 0 means that the thrust is either maximum or minimum. 



D E F ~  Elcrb 5., VOL. 22, A P ~ I L  1959 

Now (31) and (32) may be integrated to give 

where 

(I2) sinh w (t ,  - t) A, (t) = Ac (t,) cash w (t, - t )  f -k- 
w 

Ah ( I )  = w Av ( t2)  ~ i a h  w (t;! - t) f XI, (tz) cosh w ( t ,  - t) 

Now in order to draw some canclusions it will be advisable to take gravity as constant throughout the 
flight period and in that case the set of equations (38) will reduce to 

ha (t) = e 

(t) = 0,) + e ( t ,  - t )  

where e is an integratian constant. 

In the following examples we will take the niinirnum thrust subarc tu be coasting subarc, i. e. /I* -+ 0. 
' ,.i% 1 4  

Example 1-Maximum Final Height. 

In this case J - h  (t,) 
The boundary cc~nditions of the given problem are 

f h = h o  ' f  v = v2 

t = r o = o  1 u = u ,  7 t = t ,  (unspecified) 
I ( m = m o  \ m = m ,  

Since the final time is nat prescribed and with the aid of prescribed boundary conditions, the transverality 
condition (36) leads to 

c ( t , )  = 0 , hh (12) = 0  

In thiq case therefore e = 1 
4 

Also here 

This shows that K ,  and K,  both have only one zero, i. e. in each stage there can only be one corner point 
and hence almost two subarcs in each stage. If we integrate (40). we have 

where subcripts Ci ( i  = 1, 2) refer to the instant of the corner point. Now if Pi = Pi** then obviously 
from (41) Ki , 0  and if Pi - 0  then from (42) Ki < 0 . Also at the final point ( t  = t2 )  only (42) can hold 
since t, ,- tc, ; i. e. the b a l  point is reached with a coasting subarc. Again since in each stage there can 
be only one c w e r  point, we see that for the first stage there can be two possibilities 

either (i) PI = PI** to G t 4 t1 

or (ii) 8, = PI** to< t <  t$ (43) 

& = O  to1 < t < f ,  

But since 
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we observe that the following oorresponding subarcs are possible in the second stage 

(i) p2 = p2**, tl < t < fez, p, = 0, tcZ < t < t2 (ii) a = 0, 1, < i .< t2 

Fig. 1 illustrates the possible optimum controls associated with the problem of achieving maximum final 
height. 

E q t e  2-Maximum Final Velocity. 

In  this case J = - v ( t , )  

The prescribed boundary oonditions are 

J h Z h 0  t = f , , = O  1 ' = ' 0  
' t = 't, (unspecified) (rn = rn2! 

rn = who 

Since the h a 1  time is not prescribed and making we of the given boundary conditions the transversality 
condition (36) gives 

C (t2) = 0 , /\h (12) = 0, Av (t2) = 1 (44) 

Therefore (39) implies that s = 0 

Also here K ~ , = O  ( i = 1 , 2 )  

i. e. Kgi is constant throughout the flight. , - 
Also making use of the first integral (37), we obtain at the h a 1  point 

2 

162 (t2) Kg* (12) = $3 i. e. Kg, ('2) > 0 
and hence the final point is reaohed with a maximum thrust subarc. 

Now sincs Kg has no zero in a given stage, the optimum subaros to achieve the given mission must be of' 
the form 

The optimum control associated with h e  problem of maximum final velocity is indicated in Fig. 2. 

Emrnple 3-Maximum Payload 6~ m i m u m  Fuel Consumption. 

In this case J a - vn (t,) 

Fig. 1-Mass flow rate versus time for a two-stage rocket 
for achieving maximum height. 

Fig. 2-Mass How rate versus time for a two-stage rocket 
for achieving maximum velooity. 

76 



The boundary conditions are specified by 

I h = h0 

t = t  - -0  a -  1 U = V o  t = t ,  (unspecified) ( h = b] 
I m = who 

Since the final time is not specified and with the help of the given boundary conditions we obtain 
C (t , )  = 0 , A ,  ( t2 )  = 1 , X ( t , )  = 0 (46) 

Also in this case 

Therefore 

Thus Kp, does not change sign during the stage and hence cannot be zero more than once in any stage. 
Also at the final point 

Kg2 (t2) = - 1 
Therefore a t  the final point Kg, is negative, i. e. /3% (te) = 0 ind hence the final arc is a coasting subarc. 

Now making use of the first integral we obtain 

But as already observed that final point is attained with a coasting subarc, therefore (48)  implies that the 
velocity is zero a t  the final point. Now we make use of the relation 

(Kg1 ahl = (KBB P2)tl 
We have already seen that Kg, and Kg, cannot have more than one zero each and therefore for the first 
stage there can be two possible modes of propulsions, i. e. 

either (i) P i  = 81"" t ,  < t < tl 
or (ii) PI = pi** to < t  .< tc, 'i (49)  

B1 = 0 to1< t < tl 
The corresponding modes of propulsion in the moond stage will be 

(i) /32 = P2** t,< t <  tc, 1 I 

13% = 0 to, < t  < t2 t 
(ii) /3,  = 0 4 G t I S t z  1 

Thus the possible modes of operation to achieve the given mission are the same as illustrated in Fig. 1. 
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