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The variouskineticand kinematic properties of inviscid unsteady gasflows, considering the geometric proper-
ties of a pseudostationary vortexline. Analytic expression for vortloltym obtained in terms of the components
of the vélooity. The compatibility conditions governing the flow ‘are trausformed in intrinsic form which

form the feature of this investigation. Finally an attempt is made to study the complex-lamellar flows in
geometric parameters of a pseudostationary vortexline.

BASIC EQUATIONS .
The intringic properties!-3 of pseudostatlonary gas flow have been studied.® The basic equations

governing pseudostationary gas flow, in the absence of viscosity and therma,l conductivity in streaklines
velocity vector field? are
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The compatibility conditions to be satisfied by the pseudostationary velocity vector are
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GEOMETRIC RESULTS

Considering ¢, n, b as triply orthogonal unit tangent vectors, principal normals and binormals of
the curves of congruences formed by pseudostationary vortexlines respectively and denoting
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B oan d ™ directional derivatives, along these vectors also selecting ¢ as the position vector in
space, we have the following geometrio results®:
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where Q,, Q,, Qs are the resolved parts of the velosity components along pseudostationary vortexline
principal normal and binormal respectively.

39 -



Der. Bor. J., Ver. 22, Janvary 1072

INTRINSIC- DECOMPOSITION

I have decomposed the basic equations. into intrinsic form a.nd studied some of the interesting
kinematic and kinetic properties of flows.

Operating ourl on (4), we obtain’
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These are the intrinsic relations to be satisfied by the pseudostationary vortexline geometry mm

velocity veotor field components which are independent of the nature of the fluid compressible or °
incompressible.
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"This expresses the conservation of mass along the congruences formed by the pseudostatlonary vortex-
lines, principal normals and blnormals

. Also using the solenoidal property of W we obtain = S ,
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From this we observe that the vorticity magmtude is unlform along an 1nd1v1dual pseudostationary
vortexline, if normal surfaces are minimal and the converse is also true

Making use of (3) and (4) in \ (1b), we obtain
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These give us the conservation of momentum in pseudostationary vortexline geometry.
The energy équation (1 o) can be written as ‘
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The compatlblhty condltmns (2) can be decomposed in mtrmsﬁ: form as )
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COMPLEX.LAMELLAR FLOW

A complex-lamellar flow is one in which the streaklines are normal to a gne parameter family of
surfaces, i.e., it is a field of the types.
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where ¢(r) = constant are defined ‘as Beltrami surfaces and the function a (r) is called . the distance
. function for the family of the Beltrami surfaces.

_ Forming the soalar producjz of (3) and (4), we obtain @, = 0, i.e., the velocity vector lies in the normal
plane of the pseudostationary vortexline for a complex-lamellar flow.

The vorticity expressions (7) simplify to -
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Operating ourl\on' (13) we obtain
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This shows that the pseudostatmnary vortexhne is the curve of mtersectlon of the Beltrami and
its dxsta.nce functlon surfaces
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Equatlons (6), (8 a) and (9) s1mphfy to
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