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" The behaviour of sonicdiseontimiities when a perfect gasis subjectedbomdlatmn hasbeenstudied, The growth -

and decay of plane and spherical waves has a.lso been studied after obtalmng second and third order
compatibility.

When pressure, denswy and velocity are contmuous across & moving surface Z (t), while at least one
of the first derivatives of these quantities with respect to the space coordinates arediscontinuous,
Thomas! called it a sonic wave of order one or simply a sonic waveé and discussed its growth and decay.
In this paper, we have studied how these sonic discontinuities behave when a perfect gas is subjected
to radiation. In the course of discussion we have introduced Klimshin’s coefficient, obtained second and
third order compatlblhty conditions and studled the growth and decay of plane and spherical waves.

EQUATIONS OF MOTION AND COMPATIBILITY CONDITIONS °

Neglecting vﬁsm and thermal conductivity the differential equations governing the e uatmn of mo-
y eq g q

tion of a perfect gas, when radiation effects are taken mto secounts, are
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py 8nd Py being the material pressure and radiation pressure®. _ Eyuations (1), (2) and (3) are referred toa
system of rectangular coordinates x;, comma (,) indicates partial derivative with respect to these coordi-

.....

nates, F;is the radiation flux and bis the generahzed Kﬁmshm ‘coefficient® to be “defined later. ‘The
material energy and ~rad1at1on energy are given by ;(—yp:—”_—._———) and L f respeotlvely where ¥ is the ratio
of specific heats,” Assuming - -

oy =wendpy =(1—=3p (O <z<1)

the total energy. of the gasis given by

pE—T1)
where k——i4(7—-1)'+—z(4—-—-3y)}/(3(7-—1)+z(4—3y)}

Tt is easy to see that when z=1, thatis when radiation effects are not considered, the Klimshin coefficient
b becomes equal to the usual adlabatw exponent y. We can write;

4
| ¥i = 2P (5
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where ‘ ' 4= — a-ﬂ{‘r:ﬂ

¢ being the velocity of light, +'is the coefficient of opacity and 4 is a Stefan Boltzmann constant.

Let the moving surface be denoted byX (¢). Then if the discontinuity or jump across the moving
surface is indicated by a bracket [ ], we have,

o] =[] = [w] = [F.] =0 (6)
over Z (). We assume the regularity of the surface X (f) and the existence of the limiting values of the
funotions and their derivatives as one approaches this surface from each side. If G be the velocity of the

_moving surface, the follovnng relations, called compatibility conditions of the first order, are satisfied.
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. where the qua.n‘mtles ¢, L, A; and »; are suitable functions defined over the surface X (f), £ and { being
goalars on X' (t). The quantltles A; and 7; can be replaced by scalars A and % since A, = M and #; =
_wy; where v; are the components of the unit normal v to the surface 2 (f).

VELOGITY OF ‘TEE MOVING SURFAOE

From (1) to (3) and the campatlbxhty conditions ( 7) to (10),” we get,

Pl — @) N+ E% =0 (11)

=@t eAn=0 - x (12)

e U NGt Fhp v+ (E=Y =0 1 (13)

where %, is the normal velocity, multiplying (11) in turn by w; and v; we get o

p(us — @) Xui+ u, =0 , (14)

* ‘and 7 P (uy —“—-G) Mvi4 =0 - ‘ (1)
A,(_lding (13)and ( 14) we have, , » o

| L Em— @ R+ =D =0 e

Multlplymg (15) by #p, (16) by p (tn — &) and subtmctmg weget, . .

. éP(uu_‘G ’—'fl@"l‘(k—l)np(un—g)—o o , (17)

" Asa consequenoe of (16), (17) can be written as- I | ,

cefpm—an—rp— ESDT o | a8)

Let the speed S of the sonic wave defined by . 8= (G — uy,) be différent from zero. Then, ifé="00on 2 (¢
it follows from (11) and (12) that {= 0 meaning thereby that the surface is not a sonic wave of order one
which is contrary to our a.ssumptmns tHence £ # 0 and we have from (18)

| (’“'n G)n _ { Bp_ (k_;Al)ﬂ} | | o | (}?)
Again from the equation (12), (15) and (19), we get R AT ‘ o

A= €[ (@ ) (21)
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and , "7'“{(’“ -—G)—'kp]' (k—-l)

"If we assime thatthe sonic waveis propagated into & gas at rest within which the total pressure p and
density p are constant ; u; = 0 on the surface 2 () and hence the speed of propagation of the wave is
given by R

£ .
peeoee

(22)

| o [, k=Da)} . -
and, then the equatlons (20) to (22) become

—p/\/(r’ f—thandq(k—-l)—2BPz\ : (24)
‘where , 2B={G”—- ;p. :

CONDITIONS OF COMPATIBILITY OF THE SECOND AND THIRD:
__ORDERS .

. The conditions of the compatibility of second and thlrd orders of the quentities p, p, w; - and B
are applicable in equations (47) to (51) When G = constant the compatlblhty condxtmns of the second
order for velocity component u; are given by

[oti-5e] = Xi v vk + 4°B Aiya_ (V; Tx, B + Wa%ﬂ) —X 9“5 2 bao Tjyp Ty s (25)
- and S o .
% ' = 3)" T eB . . ey
~ [am,az] (—o %+ W)f”f"**"g Ma @B N

The corresponding conditions of compatlblhty for the functions », p and: F. are given by o s

[2; 1] = € vivj + goB f,a(va Zj, g+ v "’ﬁﬂ)—f g°R 9% b Tis B Tpyr (27)
32p gé‘*M - ap: -~ ;
[%’t‘]=( G£+ )v.-—G‘g f,a% (28)
[pi]= ;W":‘l"g"'pcsa(Vsmj’ﬁ+"5z" )aggaﬂf‘rb“z.,pmj,, (29)
I°p 7 a{ @, B
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AThe third order compatibility conditions for the quantity p is givent by

[ 2 4] ==fv¢Vjvk+f,a 9B (i @iy p + vivi @i, B+ vivj T, g) —
Y — § bgo goB g"'(vs Tjy B Thy 7 + Vi®%h B T T+ %p @ 1) (32)

where the quantities X;, £, { and»; are new functions defined on the surface X (f) and by, are the
.components of the second fundamental form of the surface. The relations {25), (27), (29), (31) and (32) are
called the geometrical conditions of oompatlblhty and . (26), (28) and (30) are called the kmematmal
conthwns of compatibility,

‘

Since a;,, p are the components of the veotors tangentlal to the surface Z (t), we have,

LT (33)
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/\;gzw;,ﬁ =AawB,pg +Ava Tp
=(AVS),4 i, B ='1‘A"i$s’aaﬂ
= A %V bap=—Abapg (34)

wherc %, off ‘ite- the components of the second co-variant derivative based on the metric of the surface
z (t) Cmtraotmg the indices ¢ and j in, (25) and using (33) and (34), we get

[, ik] (ht v‘) Vb + 9“5 Aoa Vi Tp, 8 — 22 2 t . (30)
where Q is the mean ourvature of the surface Z (t). But since '
Miavi = iv)a—Avira

=Aa —AV;¥,a 3 :
=X ‘ (36)
(35) becomes - [y ] = i vi —2A Q) v+ 9B Mo 8 (37)
Now multiplying (37) by vz we get ' : .
[ al v = A vy — 22 Q (38)
similarly, Py alm = —29Q (39)

If P, and P,bethe valuesof a quantity P on sides 1and 2 respeotxvehy of the surface & (¢) the dis-
contmmty in the product PQ is given by
. [PQ1=Q:[P1+ P [Q1—[PI(Q]
If the gas is at rest on the side 2 of 2 (¢) and if the pressure and density are consta.nt on this side of
the surface as in seotion relatmg to the "veloclty of the movmg surface’’ then ,
[PQ) =—[P][Q] e S )

provided the quantities P and @ involve denv&tlvea of the prespure p or densxty p as a factor or have
a8 & factor, the velocity components u; or their derivatives, Thus, we have

[ e lvj = —-«G)«; + & A (41
*

) [P: ‘i] g"l +g d f:aa’t, . ] (42)

[a::;t;]”‘ - =T+ —aé )

[P,-'ﬂe]!'jva—fv.+g“ﬂ§,am-, I (45)'

And with the help of (40), we have
[P’i"M] vi = [P’j .,;] vj 7 CA
[p’juﬁ‘] "'J = —GA

[W’}uj’ﬁ] vivi = __Aﬁ

[P,j %’-] Wy = GO

. [!“’45 i;‘;] vjn% G‘;\s‘ v | J

(46)
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APPLICATION OF THE COMPATIBILITY CONDITIONS

~ Differentiating (1), (2), (3) and  (5) w1th respect to « and observing that %= o on z (t),
we have

‘ 2By ' i _ .
[m < ] +» [ > ]+ [ Psis | TP [ Uiyj Yjsk ]'== 0 wn
-2 : ; ' R o B
[ ?‘;jpat ] + [ Psi Yisg ] + [ Poj Yisi ]'+P [ Uighj ] =0 = : - 48y
. ﬂs E : - ) g - . . : 3 N
[ @{t ] —P [“"J ] + 7‘[ P |+ kﬁ[ u.-,cj_] + ( -—1) [ Fig ] =0  (d9)
plFi;] = Apsij - (50)
Ag‘ain differentiating (50) we get,
Lo Foj 1+ p [ Fionl = AL D] j (61)
By using the compa,tlblhty conditions of second and third order, in (47) to (51), we geb ... . -
(o ZHE)—bn=0 - e
§§=2a+2MQ+Gi—dm )
E -+ fA+27cpm+2(k-—-1>nﬂ+Gf —Icpm.u(k—l)w. BN
dE=p ‘ (65)
Int 46 = pmn | 69
Subst1tutmg for kp in (54) from (23), we obtam R )
:f (’“+1) adt Gam+(’“ e ).; P — Mg } e
‘From (52) and (55), we have a ’
4 N | _ :
c (&) a,pgx.-v; | BN
Again, from (56) and (56) we have

- Gpmivi = P/ (7\ + G) | (69)
With the help of (57 ), (68) and (59), we get coo-

¥ (k41 L (f—1) D m) M
-:'I—-—2—§/\+PGBW+ T{'—G-( : 7)—'?(}\4-6')} (60)

Differentiating (24) with respect to time, we have A
3 _ g e A o
v T e (61)
- Simplifying (60) by making use of (61) and (24), we get

9 _ [(k+Da ' & |
’ —5; - 2@ lfa + Gafg + = X3 | (62)
wher® * | o= Gt-/ (‘G‘!—-B) -

p— 2(—l=—ds

and i
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~ Again with the help of (60), we get from (62) -

S __,3: = { &iz_'),—a C;‘ } 2 GarQ + 2 . (63)
S o _ [ (k+1Ga . zb -
and rr ’L — GP }C’+aG’§Q+ (64)

Whén. isonic wave surfaces X (f) are propagated into a quiescent gas, (62), (63) and (64) give
the equation of the quantities ¢, A and { "along the normal trajectories of these surfaces. From
these equations one can also predlct the. growth and decay of the sonic discontinuities assocla.ted w1th
the wave surface 2 (f). i : ;

Leb Z (t,) represent the sonic wave surface at the time #,, Then if & be the distance measured
from - X' (ty) along the normal trajectories to the family of surfaces X' (f) in the direction of pro-
pagation, o = G (&) and the quantifies A, ¢ and { are functions of the dlstance o a,long
each of the normal trajeotories. Hence,

¥ _gd D a at 4t

r :zi:'aﬁ“’?‘a‘:G‘d? )
From (62), (63) and (64), we get, - _ |

%; {12%_1 ~ %;}'aaa +a0 + X | (67)
i CE-{ s Termrg @

As we shall see below, it-is convenient to use (66), (67) and (68), in the discussion that follows,

PLANE AND SPHERIGAL WAVES

In the case of plane waves X (), the mean ourva.ture Q =0 and then (66), - (67) and (68), take
the form,

do 2G G

fh41 &
i;(; _’@7}@;9"'"@7 (69_)
- [E+1 1 | L
| R I (1)
it _ [k+1 17\ a6 ., B g -
and = =" —}T P*"E (71)

Integrating these equations, we have

(i)} L e

A A=)/ {1=—a 1+ 'pq»\o)}’ , (78)
" and v E=46 /{1‘-—“’ h(«'_]-4+l3__G'a;é')} _ (74) |
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da e (1) s ()

&» A and {, being the values:of the scalars £, A and { - at points-of the surface X (t)) whete s = 0.
From (5) we can see that the value of g is always negative. Now from (72), (73) and (74), we can discuss
the following result. If £, A and {,are negative the quantities ¢, A and-{ will approach zero asthe
distance o -» 0o whereas for positive values of £, Ay and &, these quantities become infinite for the value
of ¢ given by, ' : ’ '

-

tog ( 1+ pf,) - )

It follows from the equation (24) that if one of the quantities £y A, or I, is negative or positive the
other two will likewise be negative or positive. Also, the three ratios in (75) must have equal values. In
the first case, when the scalars are negative the sonic discontinuities will decay or be damped out while
in the second case when fhe quantities are positive, the sonic discontinuities will go until the wave
finally terminates in a shock for the value of o givenin (75). If the sonic wave surfaces X' (¢) consist of a
~ family of concentric spheres the mean curvature £ is— 1/R where R denotes the radiiof the spheres of the
family provided R is assumed to increase with the time ¢. Replacing the distance ¢ by R in (66), (67) and
(68), we have ) ‘

&= (G- w)en(E-5) “m
and ]
. m-(F e erilEg) (e
Integrating (75), (76) _and (77), we get
TGP
+ - (@ =5 ) grre Few R

where the integration has been carried out with the help of Hankel’s contour. As B-»co0, £, Aand { tend
to zero indicating that the sonic discontinuities are damped out whereas they become indefinitely large

- a8 R -0 showing that the sonic wave must degenerate into a spherical shock. This fact is borre by the
Hankel’s contour as well,
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