SOME NEW COORDINATE SYSTEMS IN A RIEMANNIAN SPACE

S. C. RASTOGI

Lucknow University, Lucknow

(Received 20 August, 1970)

This paper defines two new coordinate systems viz, pseudo-geodesic and pseudo-Riemannian. Spaces for which the equations of pseudo-geodesics admit a first integral have also been studied.

Consider a space V_n of coordinates x^i $(i=1,\ldots,n)$ and metric $g_{ij} dx^i dx^j$, immersed in a Riemannian V_m of coordinates y^a $(\alpha=1,\ldots,m)$ and metric $a_{\alpha\beta} dy^{\alpha} dy^{\beta}$. Considering a congruence of curves $\lambda_{\tau 1}^{\alpha}$ given by

$$\lambda_{\tau 1}^{a} = t_{\tau_{1}}^{i} y_{i}^{a} + \sum_{\nu} C_{\nu \tau 1} N_{\nu 1}^{a}, \qquad (1)$$

Pan¹ defined the relative first curvature vector of the curve C of the subspace V_n as follows:

$$\eta^{i} = p^{i} - \sum_{\nu,\tau} \overline{C}_{\nu\tau 1} K_{\nu 1} t_{\tau 1^{i}} + \sum_{\nu,\tau} \overline{C}_{\nu\tau 1} K_{\nu 1} t_{\tau 1 k} \frac{dx^{k}}{ds} \frac{dx^{i}}{ds}$$
(2)

He also defined pseudo-geodesic curves of the subspace as the curves for which relative first curvature vanishes at each and every point of the curve. Pan¹ obtained the differential equation of pseudo-geodesics in the following form :

$$\frac{d^2x^i}{ds^2} + U^i_{jk} \frac{dx^j}{ds} \frac{dx^k}{ds} = 0$$
(3)

where

$$U_{jk}^{i} = \left\{ \begin{array}{c} i\\ jk \end{array} \right\} - \sum_{\nu,\tau} \overline{C}_{\nu\tau 1} \Omega_{\nu 1jK} \left(t_{\tau 1}^{i} - t_{\tau 1l} \frac{dx^{l}}{ds} \frac{dx^{i}}{ds} \right).$$

$$\tag{4}$$

Using this relative connection U_{jk}^{i} , Upadhyay & Trivedi² defined the relative covariant derivative of a mixed tensor X_{j}^{i} as follows:

$$X^{i}_{j:k} \stackrel{\text{def}}{=} \partial_{k} X^{i}_{j} + X^{l}_{j} U^{i}_{lk} - X^{i}_{l} U^{l}_{jk}.$$

PSEUDO-GEODESIC COORDINATES

If s is the arc length of a curve C through a point P_0 , measured from that point, then we have

$$x^{i} = x_{0}^{i} + \left(\frac{dx^{i}}{ds}\right)_{0}^{s} s + \frac{1}{2} \left(\frac{d^{2}x^{i}}{ds^{2}}\right)_{0}^{s} s^{2} + \dots \dots$$
 (5)

the subscript zero denoting that the function is to be evaluated at the point P_0 . If C is a pseudo-geodesic, the coefficient of $\frac{1}{2}s^2$ is equal to $-U^i_{jk}\xi^j\xi^k$, where

$$\xi^{j} = \left(\frac{dx^{j}}{ds}\right)_{0}.$$
 (6)

Consequently in case of a pseudo-geodesic we have

$$x^{i} = x_{0}^{i} + \xi^{i} s - \frac{1}{2} U_{jk}^{i} \xi^{j} \xi^{k} s^{2} + \dots$$
 (7)

We shall now define a system of coordinates for which

$$U^i_{jk} = 0, (8)$$

27

DEF. SCI. J., VOL. 22, JANUARY 1972

and we call such a system of coordinates as the pseudo-geodesic coordinate system with pole at P_0 .

From the definition of relative covariant derivative it is clear that :

· 'At the pole of a pseudo-geodesic coordinate system the components of relative covariant derivative are ordinary derivatives'.

The condition that a system of coordinates be pseudo-geodesic, with pole at P_0 , may be expressed in another form as follows:

If in the relation

$$U_{ij}^{h} \frac{\delta x^{d}}{\Im \overline{x}^{i}} = U_{ab}^{d} \frac{\delta x^{a}}{\Im \overline{x}^{i}} \frac{\delta x^{b}}{\Im \overline{x}^{j}} + \frac{\delta^{2} x^{d}}{\Im \overline{x}^{i} \Im \overline{x}^{j}}$$
(9)

we interchange the x's and the \tilde{z} 's, we may write the relation (8) in the form

$$-\overline{U}_{ab}^{d} \frac{2\widetilde{z}^{a}}{\partial x^{i}} \frac{2\widetilde{z}^{b}}{\partial x^{j}} = \frac{\partial^{2}\widetilde{z}^{d}}{\partial x^{i}} - \overline{U}_{ij}^{h} \frac{\partial \widetilde{z}^{d}}{\partial x^{h}} = \left(\frac{2\widetilde{z}^{d}}{\partial x^{i}}\right)_{ij} (10)$$

If the \tilde{z} 's are pseudo-geodesic coordinates with pole at P_0 , the coefficients \tilde{U}_{ab}^d all vanish at this point and therefore also the function $(\tilde{\sigma z}^d/\tilde{\sigma x}): j$. Conversely if $(\tilde{\sigma z}^d/\tilde{\sigma x}): j$ all vanish at P_0 , it follows from (9), (since the functional determinant $\tilde{\sigma z}/\tilde{c}x$ is not zero) that the relative connection \tilde{z}_{ab}^d all vanish at P_0 , showing that the x's are pseudo-geodesic coordinates. Thus:

T heorem I

'The necessary and sufficient condition that a system of coordinates be pseudo-geodesic with pole at P_0 is that $(35^d/3x^i): j = 0$ '.

Now we shall prove the existence of a pseudo geodesic coordinate system for any V_n with an arbitrary pole at P_0 .

Let x^{j} be a general system of coordinates whose values at P_{0} are x_{0}^{i} and \tilde{x}^{i} another system of coordinates defined by

$$\tilde{x}^{i} = a^{i}_{k} (x^{k} - x^{k}_{0}) + \frac{1}{2} a^{i}_{k} U^{h}_{jk} (x^{j} - x^{j}_{0}) (x^{k} - x^{k}_{0}), \qquad (11)$$

where the coefficients a_k^i are constants and the determinant $|a_k^i|$ is not zero. Then at the point P_0 we have

$$(\mathfrak{F}^{i})_{\mathfrak{gol}} = a_{k}^{i}$$
(12)

and

$$(\mathfrak{z}^{\mathfrak{z}} \tilde{x}^{\mathfrak{z}} / \mathfrak{z} \tilde{x}^{\mathfrak{z}})_{0} = a_{h}^{\mathfrak{z}} \quad \underbrace{U_{0}^{h}}_{0 \mathfrak{z} \mathfrak{z}}$$

$$\tag{13}$$

Consequently, at
$$P_0$$
 the right hand side of (9) takes the form

$$a^i_h \quad U^h_{0jk} - a^i_h \quad U^h_{0jk} = 0$$
,

and the conditions are therefore satisfied that the coordinates \overline{x}^i be pseudo-geodesics with pole at P_0 .

Now it is easy to prove that for an arbitrary curve C in V_n it is possible to choose coordinates which are pseudo-geodesics at every point of C.

Since we know that for a geodesic coordinate system with pole at P_0 we have

$$\left\{\begin{array}{c}i\\jk\end{array}\right\}_{0}=0, \quad (14)$$

RUSTOGI : New Coordinate Systems in a Riemannian Space

therefore from (4) we have the following: Theorem II.

'The necessary and sufficient condition for geodesic coordinates to become pseudo-geodesic coordinates is given by either of the following:

(i) the congruence be normal,

(ii) the curve be an asymptotic line'.

PSEUDO-RIEMANNIAN COORDINATES

Let C be any pseudo geodesic through a given point P_0 and s be its are length measured from P_0 . To each point P of the pseudo-geodesic we assign coordinates y such that

$$y^i = \xi^i s. \tag{15}$$

The quantities ξ^i determine the particular pseudo-geodesic through P_0 ; and the value of s then determines the point P on this pseudo-geodesic. As there is a pseudo-geodesic from P_0 to any point of V_n , each point of the space has definite coordinates y^i assigned to it. These are the pseudo-Riemannian coordinates referred to. We shall now show that these are particular type of pseudo-geodesic coordinates with pole at P_0 .

If \tilde{U}_{jk}^{*} are the coefficients of relative connections calculated with respect to the y's, the differential equations of the pseudo-geodesics of V_n in terms of these coordinates are

$$\frac{d^2 y^i}{ds^2} + \tilde{U}^i_{jk} \quad \frac{dy^j}{ds} \quad \frac{dy^k}{ds} = 0.$$
(16)

By virtue of (14) and (15) we can easily obtain

$$\overline{U}_{jk}^{i} \xi^{j} \xi^{k} = 0 \tag{17}$$

and therefore

$$\widetilde{U}_{jk}^{\delta} y^{j} y^{k} = 0 \tag{18}$$

holds throughout the space.

Conversely if (17) are satisfied then (15) are satisfied by (14) and the y's are pseudo-Riemannian coordinates. Thus we have the following:

Theorem III

'If U^{i}_{jk} are the relative connection for a coordinate system y a necessary and sufficient condition that these be pseudo-Riemannian coordinates is that the equations'

$$U_{jk}^{i} y^{j} y^{k} = 0 (19)$$

hold throughout the space.

The equations (16) hold at P_0 for all pseudo-geodesics through that point, that is to say, for all directions ξ^i . Consequently the coefficients \tilde{U}_{jk}^i must vanish at that point, showing that the pseudo-Riemannian coordinates are pseudo-geodesic coordinates with pole at P_0 .

By using the definitions of Riemannian and pseudo-Remannian coordinates we easily obtain the following:

Theorem IV

'The necessary and sufficient condition for the Riemannian coordinates to become pseudo-Remannian coordinates is given by either of the following:

(i) the congruence be normal,

(ii) the curve be an asymptotic line.

DEF. SCI. J., VOL. 22, JANUARY 1972

PSEUDO-GEODESICS OF A SPACE

If each integral of the equations (3) of the pseudo-geodesics of a space satisfies the condition

$$a_{i_1\cdots i_r} \frac{dx^{i_1}}{ds} \cdots \frac{dx^{i_r}}{ds} = \text{Constant},$$
 (20)

the equations (3) are said to admit a first integral of rth order.

Now let us suppose that the tensor $a_{i_1...i_r}$ is symmetric in all the subscripts, then differentiating (19) relative covariantly with respect to x^j and multiplying by dx^j/ds and making use of

$$(dx^{j}/ds) (dx^{i}/ds): j = 0$$
⁽²¹⁾

we obtain

1.1

$$i_1 \cdot i_r : j \cdot \frac{dx_1^i}{ds} \cdot \cdot \frac{dx^i r}{ds} \cdot \frac{dx^j}{ds} = 0$$
(22)

Since the equations (21) must be satisfied identically, we must have

we assume that the set of
$$R(a_i,a_i,j)=0$$
 we are the factor of the set of r of $T(23)$.

where P indicates the sum of the (m+1) terms obtained by permuting the subscripts cyclically.

In particular, if (19) is of the first order, i.e., if

$$a_i (dx^i/ds) = \text{Constant},$$
 (24)

the condition (22) reduces to

the trade of the second se

$$a_{i:j} + a_{j:i} = 0, \qquad (25)$$

669

i.e., the vector a_i is a relative Killing vector². Thus we have:

Theorem V

'If the equation of a pseudo-geodesic admits an integral of the first order then the covariant vector a_i is a relative Killing vector.'

REFERENCES

1. PAN, T. K., Belative first curvature and relative parallelism in a subspace of a Riemannian space, Univ Nac. Tucuman Rev., A 11 (1957), 3-9.

2. UPADHYAY, M. D. & TRIVEDI, H. K. N., Relative covariant differentiation and its applications. (Under Publication).

1