sOME NEW COORDINATE SYSTEMS IN A RIEMANNIAN SPACE

S. C. Rastogi

Luoknow University, Luoknow
(Received 20 August, 1970)
This paper defines two new coordinate systems viz, pseudo-geodesic and pseudo-Riemannian. Spaces for which the equations of pseudo-geodesics admit a first integral have also been studied.

Consider a space V_{n} of coordinates $x^{i}(i=1, \ldots, n)$ and metric $g_{i j} d x^{i} d x^{j}$, immersed in a Riemannian ∇_{m} of coordinates $y^{\alpha}(\alpha=1, \ldots, m)$ and metric $a_{a \beta} d y^{\alpha} d y^{\beta}$. Considering a congruence of curves $\lambda_{\tau 1}^{a}$ given by

$$
\begin{equation*}
\lambda_{\tau 1}^{a}=t_{\tau_{1}}^{i} y_{; i}^{a}+\sum_{\nu} C_{\nu \tau 1} N_{\nu 1}^{a} \tag{1}
\end{equation*}
$$

Pan ${ }^{1}$ defined the relative first curvature vector of the curve C of the subspace V_{n} as follows:

$$
\begin{equation*}
\eta^{i}=p^{i}-\sum_{\nu, \tau} \bar{C}_{\nu \tau 1} K_{\nu 1} t_{\tau 1}{ }^{i}+\sum_{v, \tau} \bar{C}_{v \tau 1} K_{v 1} t_{\tau 1 k} \frac{d x^{k}}{d s} \frac{d x^{i}}{d s} \tag{2}
\end{equation*}
$$

He also defined pseudo-geodesic curves of the subspace as the curves for which relative first curvature vanishes at each and every point of the curve. Pan ${ }^{1}$ obtained the differential equation of pseudogeodesics in the following form :

$$
\begin{equation*}
\frac{d^{2} x^{i}}{d s^{2}}+U_{j k}^{i} \frac{d x^{j}}{d s} \frac{d x^{k}}{d s}=0 \tag{3}
\end{equation*}
$$

where

$$
U_{j k}^{i}=\left\{\begin{array}{c}
i \tag{4}\\
j k
\end{array}\right\}-\sum_{\nu, \tau} \bar{C}_{v 11} S_{\nu 1}{ }_{j K}\left(t_{\tau 1} \dot{1}^{i}-t_{\tau 1 l} \frac{d x^{l}}{d s} \frac{d x^{i}}{d s}\right) .
$$

Using this relative connection $U_{j k}^{i}$, Upadhyay \& Trivedi ${ }^{2}$ defined the relative covariant derivative of a mixed tensor X_{j}^{i} as follows:

$$
X_{j: k}^{i} \stackrel{\text { def }}{=}{ }_{\partial k} X_{j}^{i}+X_{j}^{l} U_{l k}^{i}-X_{l}^{i} U_{j k}^{l}
$$

PSEUDO-GEODESIO COORDINATES
If s is the arc length of a curve C through a point P_{0}, measured from that point, then we have

$$
\begin{equation*}
x^{i}=x_{0}^{i}+\left(\frac{d x^{i}}{d s}\right)_{0} s+\frac{1}{2}\left(\frac{d^{2} x^{i}}{d s^{2}}\right)_{0} s^{2}+\ldots \ldots \tag{5}
\end{equation*}
$$

the subscript zero denoting that the function is to be evaluated at the point P_{0}. If C is a pseudo-geodesic, the coefficient of $\frac{1}{2} s^{2}$ is equal to $-U_{0}^{i}{ }_{j k} \xi^{j} \xi^{k}$, where

$$
\begin{equation*}
\xi^{j}=\left(\frac{d x^{j}}{d s}\right)_{0} \tag{6}
\end{equation*}
$$

Consequently in case of a pseudo-geodesic we have

$$
\begin{equation*}
x^{i}=x_{0}^{i}+\xi^{i} s-\frac{1}{2} U_{0}^{i} \xi^{j} \xi^{k} s^{2}+\ldots \ldots \tag{7}
\end{equation*}
$$

We shall now define a system of coordinates for which

$$
\begin{equation*}
U_{0}^{i}{ }_{j k}^{i}=0, \tag{8}
\end{equation*}
$$

and we call such a system of coordinates as the pseudo-geodesic coordinate system with pole at $P_{\mathbf{0}}$. .
From the definition of relative covariant derivative it is clear that :

- 'At the pole of a pseudo-geodesic coordinate system the components of relative covariant derivative are ordinary derivatives'.

The condition that a system of coordinates be pseudo-geodesic, with pole at $\boldsymbol{P}_{\mathbf{0}}$, may be expressed in another form as follows:

If in the relation
we interchange the x 's and the \hat{x} 's, we may write the relation (8) in the form

If the \widetilde{x} 's are pseudo-geodesic coordinates with pole at P_{0}, the coefficients $\tilde{U}_{a b}^{d}$ all vanish at this point and therefore also the function ($\left.\delta x^{d} / \partial x^{i}\right): j$. Conversely if ($\left.\delta \tilde{v}^{d} / 2 x^{i}\right): j$ all vanish at P_{0}, it follows from (9), (since the functional determinant $\partial \vec{z} / \hat{c}^{x}$ is not zero) that the relative connection $\widetilde{x}_{a b}^{d}$ all vanish at P_{0}, showing that the x 's are pseudo-geodesic coordinates. Thus:

Theorem I

'The necessary and sufficient condition that a system of coordinates be pseudo-geodesic with pole at P_{0} is that $\left(35^{d} / 8 x^{i}\right): j=0^{\prime}$ 。

Now we shall prove the existence of a pseudo geodesic coordinate system for any V_{n} with an arbitrary poleat P_{0}.

Let x^{j} be a general system of coordinates whose values at P_{0} are x_{0}^{i} and \tilde{x}^{i} another system of coordinates defined by

$$
\begin{equation*}
\tilde{x}^{1}=a_{k}^{i}\left(x^{b}-x_{0}^{k}\right)+\frac{1}{2} a_{h}^{i} U_{j k}^{h}\left(x^{j}-x_{0}^{j}\right)\left(x^{k}-x_{0}^{k}\right), \tag{11}
\end{equation*}
$$

where the coefficients a_{k}^{i} are constants and the determinaint $\left|a_{k}^{i}\right|$ is not zero. Then at the point P_{0} we have

$$
\begin{equation*}
\left(s^{2} / 8 x^{i}\right)_{0}=a_{k}^{i} \tag{12}
\end{equation*}
$$

and

$$
\begin{equation*}
\left(x^{2} x^{d} /\left\{x^{j}+x^{b}\right)_{0}=a_{h}^{i} U_{0}^{h}\right. \tag{13}
\end{equation*}
$$

Consequently, at $\boldsymbol{P}_{\mathbf{0}}$ the right hand side of (9) takes the form

$$
a_{h}^{i}{\underset{0}{j k}}_{h}^{u_{j}}-a_{h}^{i} U_{0^{j k}}^{h}=0
$$

and the conditions are therefore satisfied that the coordinates \vec{x}^{i} be pseudo-geodesios with pole at \boldsymbol{P}_{0}.
Now it is easy to prove that for an arbitrary curve C in V_{n} it is possible to choose coordinates which are pseudo-geodesicsat every point of C.

Since we know that for a geodesic coordinate system with pole at P_{0} we have

$$
\left\{\begin{array}{c}
i \tag{14}\\
j k
\end{array}\right\}_{0}=0,
$$

therefore from (4) we have the followilig:
Theorem II.
'The necessary and sufficient condition for geodesic coordinates to become pseudo-geodesic coordinates is given by either of the following:
(i) the congruence be normal,
(ii) the curve be an asymptotioline'.

PSEUDO-RIEMANNIAN COORDINATES

Let C be any pseudo geodesic through a given point P_{0} and s be its are length measured from P_{0} To each point P of the pseudo geodesic we assign coordinates y^{i} such that

$$
\begin{equation*}
y^{i}=\xi^{i} s \tag{15}
\end{equation*}
$$

The quantities ξ^{i} determine the particular pseudo-geodesic through P_{0}; and the value of s then determines the point P on this pseudo-geodesic. As there is a pseudo-geodesic from P_{0} to any point of V_{n}, each point of the space has definite coordinates y^{i} assigned to it. These are the pseudo-Riemannian coordinates referred to. We shall now show that these are particular type of pseudo-geodesic coordinates with pole at P_{0}.

If $\tilde{I}_{j b}^{\ell}$ are the coefficients of relative connections calculated with respect to the y 's, the differential equations of the pseudo-geodesics of V_{n} in terms of these coordinates are

$$
\begin{equation*}
\frac{d^{2} y^{i}}{d s^{2}}+\bar{U}_{j k}^{i} \frac{d y^{j}}{d s} \frac{d y^{k}}{d s}=0 \tag{16}
\end{equation*}
$$

By virtue of (14) and (15) we can easily obtain

$$
\begin{equation*}
\bar{U}_{j k}^{i} \xi^{j} \xi^{k}=0 \tag{17}
\end{equation*}
$$

and therefore

$$
\begin{equation*}
\tilde{U}_{y k}^{i} y^{j} y^{k}=0 \tag{18}
\end{equation*}
$$

holds throughout the space.
Conversely if (17) are satisfied then (15) are satisfied by (14) and the y 's are pseudoRiemannian coordinates. Thus we have the following:

Theorem III

'If $U_{j k}{ }_{j k}$ are the relative connection for a coordinate system y a necessary and sufficient condition that these be pseudo-Riemannian coordinates is that the equations'

$$
\begin{equation*}
U_{j k}^{i} y^{j} y^{k}=0 \tag{19}
\end{equation*}
$$

hold throughout the space.
The equations (16) hold at P_{0} for all pseudo-geodesics through that point, that is to say, for all directions ξ^{i}. Consequently the coefficients $\tilde{U}_{j k}^{i}$ must vanish at that point, showing that the pseudoRiemannian coordinates are pseudo-geodesic coordinates with pole at $\boldsymbol{P}_{\mathbf{0}}$.

By using the definitions of Riemannian and pseudo-Remannian coordinates we easily obtain the following:

Theorem IV

'The necessary and sufficient condition for the Riemannian coordinates to become pseudo-Remannian coordinates is given by either of the following:
(i) the congruence be normal,
(ii) the curve be an asymptotic line.

PSEUDO-GEODESICSOFASPACE

If each integral of the equations (3) of the peendogeodesics of a spaee satisfies the condition

$$
\begin{equation*}
a_{i 1} \cdot i_{r} \frac{d x i_{1}}{d s} \cdots \frac{d x i_{r}}{d s}=\text { Constant, } \tag{20}
\end{equation*}
$$

the equations (3) are said to admit a first integral of r th. order.
Now let us suppose that the tensor $a_{i_{1}, \ldots i r}$ is symmetric in all the subscripts, then differentiating (19) relative covariantly with respect to $x j$ and multiplying by $d x i / d s$ and making use of

$$
\begin{equation*}
(d x j / d s)\left(d x^{i} / d s\right): j=0 \tag{21}
\end{equation*}
$$

we obtain

$$
\begin{equation*}
u_{i_{1}}, i_{r}+j \frac{d x_{1} i_{r}}{d s} \cdots \frac{d x^{i} r}{d s} \frac{d x^{j}}{d s}=0 \tag{22}
\end{equation*}
$$

Sinee the equations (21) must be satisfied identicaily, we must have

$$
\begin{equation*}
P\left(a_{i_{1}, ~}, i_{r}{ }^{\prime} j\right)=0 \tag{23}
\end{equation*}
$$

$$
\cdots:
$$

where P indicates the sum of the $(m+1)$ terms obtained by permuting the subscripts cyclically.
In particular, if (19) is of the first order, i.e., if

$$
\begin{equation*}
a_{i}(d x s / d s)=\text { Constant }, \tag{24}
\end{equation*}
$$

the condition (22) reduces to

$$
\begin{equation*}
a_{i: j}+a_{j: i}=0, \tag{25}
\end{equation*}
$$

i.e., the vector a_{i} is a relative Killing vector ${ }^{2}$. Thus we have:

Theorem V

'If the equation of a pseudo-geodesic admits an integral of the first order then the covariant vector a_{i} is a relative Killing vector.'

REFERENCES

1. Pans, T. K., Rolative first ourvature and relative parallelism in a subspace of a Riemannian space, Univ Nac. Tucuman Rev., A 11 (1957), 3-9.
2. Upadiyay, M. D. \& Trivadi, H. K. N., Relative covariant differentiation and its applications. (Under Publication).
