
.Def Sci J, Vol 32, No 3, July 1982, pp 225-229 

Unsteady Flow of a Viscous Fluid Through an Annulus 
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Abstract. One boundary of an annulus is fixed, and other boundary is subjected 
to a series of pulses: The fluid in the annulus, therefore acquires a velocity, relative 
to the annulus, due to the transfer of momentum from the boundary by viscous 
stresses. The flow relative to the annulus is determined when a constant pressure 
gradient and a series of pulses act together. The velocity profiles for unsteady motion, 
are plotted for various times and for a fixed radii ratio. 

1. Introduction 

Most of the flow problems through an annulus are studied under time dependent 
pressure gradient. In particular, we have some engineering problems in which the 
boundaries are moving like the motion of a piston, cylindrical bearings whereas the 
problem of the engines of certain aircraft fail, when guns are fired1. 

In this study, one boundary of an annulus is fixed and the other boundary is 
subjected to a series of pulses. The fluid in the annulus, therefore acquires a velocity, 
relative to the annulus, due to the transfer of momentum from the boundary by viscous 
stresses. The axially symmetrical flow relative to the annulus is determined, when 
a constant pressure gradient and a series of pulses act together. Two cases are 
considered. In the first case, an impulsive motion is given, and in the second case, 
the boundary is under the action of a series of continuous pulses. Velocity profiles 
are plotted in both the cases for various times and for a fixed radii ratio. 

2. Basic Equations 

Let (r, 0, z) be the cylindrical polar coordinates, a and b be respectively, the internal 
and external radii of the annulus, and o = bla be the radii ratio. Let the axis of the 
annulus be along z-axis, v be the axial velocity and vm be the mean velocity of the 
steady flow. We introduce the following dimensionless parameters 
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Let 

be the dimensionless constant pressure gradient. 
Then the governing equations continuity and momentum in the dimenSionless form are 

The flov velocity due to the constant pressure gradient and the action of pulses can 
be taken as 

The differential equation for steady motion is 

with the boundary conditions 

V: = 0 for 6 = 

Vf = 0 for = a 

The differential equation for unsteady motion is 

aZV,* 1 av; av; 
F+T iz a~ 

with the boundary conditions for, 

Case I 

V i  (a, T )  = 0 for all T < 0 

N 
C A d ( T  - nD) for all T > nD 

n=O 

Case ZI 

V: (1, T) = 0 for alI T 

V: (a, T) = 0 for all T < 0 

N 
C A n  X HiT - nD) for all T  > 0 

n=O I 
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where An is the strength of the nth pulse, S(T) is the Dirac delta function and H(T)  is 
the Heaviside unit step function. 

3. Solution 

Solution of the steady motion from (6) or (7) is 

P 2 v: (5) = 5(1 - - + (- log [) E log a 

Solution of the unsteady motion is obtained with the help of Laplace transform 
technique. 

Case I 

From (8) and (9), we have 

Case ZI - 
From (8) and ( lo), we have 

N 
log E 

V ,  (t, T )  = 2 n (- logo 
2 { ( R r ( * n ~ ) ~  ( T - ~ ~ )  ) 

n=O m= 1 

where a ,  is the positive root of the transendental equation 

Jo(ams) Go(am) -- Go(ama) Jo(am) = 0 

4. Flux Through The Channel 

Quantity of the fluid flowing per unit time relative to the channel is 

0 

Q Y T )  =' 2n I EV8 (4, T )  dE 
1 
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Case I 

From ( 1 2 )  and ( 1 5 ) ,  we have 

N m 

Q * ( T )  = 4% 1 [ (An e-('n12 Jo(am) 
)(Jo(am) 4- Jo(ama)  

n=O m=l  

Case ZI 

From ( 1  3) and ( 1  5 ) ,  we have 

The steady flow causes a discharge given by 

q*(T) = xV2 (cr2 - 1 )  

where 

v, = jj- ( 1  + 0 2 )  - * p [  (a= log - a l ) I  

5. Numerical Discussion 

Velocity profiles for unsteady motion for a = 10, are plotted against various values of 
time, viz (2,  4,. 6,  8), when the outer boundary is under the action of a single pulse 
(Fig. 1 & Fig. 2), 

I 
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Figure 1. Velocity distribution for unsteady motion in case I for t = (2, 4, 6, 8); 
b = lo. 
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It can be seen that in both the cases, the disturbance due to the outer boundary 
reaches the inner boundary completely approximately after T = 5. It is therefore 
obvious that if the pulse is' travelling in a direction opposing the flow, it can check 
the forward motion completely if the strength and the frequency of the pulse is large. 

Hence it is inferred that, adjusting o and T, and on application of a series of pulses. 
the phenomenon of fluid starvation can occur. 
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Figure 2. Velocity distribution for unsteady motion in case I1 for t = (2, 4, 6, 8); 
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