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The high frequency oscillations of second-order fluids near a fixed sphere have been considered. The pecu- 
liarity of the aeoond-order fluidis that the magnitude of the steady secondary streaming at large distance frcrn 
the sphere depende upon all the material constants, while for a Newtonian fluid, this is not so. The drag on 
the ephere has been calculated for various values of the non-dimensional parameters formed out of the 
material constants and the flow parameters. The outer motionis pushed away from the sphere with increase in 
the non-dimensional parameters. 

A 

The small oscillations of a body in a Newtonian fluid at  rest induce characteristic secor.dary flow 
whose nature is such that a steady motion is imparted to the whole fluid inspite of the fact that the 
motion of the body is purely periodic. This was first pointsd out by Reyleighl in his work on Kundt's 
dust tubes. Sch1ichting"as discussed the flow induced by a cylinder performing high frequency 
oscillations along an axis pbrpendicular to its generators in a viscous fluid. He has shown that when 
r == (Urn /dw) << 1 , the first order fluctuating flow is confined to a 'shear wave' region of thickness 
0 (v,/w)* , beyond which a steady flow 0 (6  0,) persists and is characterised by c R = 02, /w v,. Here v, 
is kinematic viscosity. w the frequency of oscillations, Urn and d are respectively s typical velocity 
and length. He has used the Blasius boundary layer equation for plane motion thus neglc ctirg the effect 
of the curvature. Stuarta, KelleyP and Riley5 have attempted such problems. Recently Wan@,' has 
derived the boundary layer equation for cylindrical surface in another manner and showed that the 
interaction of tho curvature and the velocity is important in second approximation in 6. 

The boundary layer equati~n for an axisykmetric flow of second-order fluids past'a sphere have 
been derived following Wang7. Using this equation, we have discussed the small oscillatione of a stream 
of the fluid along an axis of symmetry of a fixed sphere in it. The flow so caused is equivalent to that 
induced by a sphere oscillatiqj along its axis of symmetry in the fluid at rest. Assuming that the 
amplitude of oscillations is very small compared with the radius of the sphere, we have obtained first and 
second approximation& in c = Uw/w 6 $here d is the radius of the sphere;U, the velocity at infinity 
arid o the frequency of oscl%aitioni. The m nitude-6f the steaay streami%at infinity and the drag on 1 the sphere have been calculated for various va ues of the non-dimensional parameters formed out of the 
material coastant;s and w. The typical flow pattern has been shown in Big. 1. 

B O U N D A R Y  L A Y E R  E Q U A T I O N  

T&e oonstitutive equation of an incoeessible second-order fluid has been suggested by Coleman & 
No118 as 

- 

8'. .I = - p S'j + A\ + +z Bij + p3 Aik A'~ (1) 

Fig. 1-The typical flow pattern in the i i ~ s t  and second' 
quadrenh for (a, fl)-(-O. 1,0*6)  

where 

Ai. $ -  - V* ' ; j + g " k ~ j . ; ~ , B i j = a ~ ; ~ +  g ika j ;&+ 

+ 29" WE; w'; j .  (2) 
x 

,Sij is a stress tensor ; p is an undetermined hydrosta- 
tic pressure ; p,, pz and p3 are material constants; v" 
and ai are respectively velocity and acceleration 
vectors, and a semi-colon denotes covariant differen- 
tiation with respect to the symbol following it. gii 
is a conjugate metric tensor. 



?he Cauchy's equation of ' motion and the equation of continuity 
= f i j ;  

~ i , ~  = 0  

are 

where p is the density of the fluid. 

We consider a stream of 8 second-order fluid, which oscillates with frequemy w along an axis of 
symmetry of a fixed sphere of radius d within it. We introduce a, system of spherical polar coordinates 
(r, 8, 4) with the origin at  the centre of the sphere and 6 = 0  as the axis of symmetry. Let vr, re and 
v+ denote the velocity components in the directions of r, 8 and + respectively.. The potential flaw outside 
the bqundary layer region is given by 

The boundary conditions of this problem are 

r = d :  v r = O , v g  = 0 ,  

Here 8 is the boundary layer thickness. There is no flow in the direbtion of 4 and all entities are 
independent of + ; hence the flow is misymmetric. 

We discuss the case when the amplitude of oscillations is very small mnzpamed with the radius of 
the sphere, i.e. E = ( U ,  /do) << 1 . Assuming a thin boundary layer of order a, we introduce 

1 
u.=- 

1 
v,, v =  - t)e , y = - (a  -*I) 

s u, u* € 

All the nor-dimensional entities introduced in (7) are of order unity. Sub~tituting (1) and (2)' (3) 
yields the following non-dimensional equation in the directions of'y and. 8 respectively. 

where 0 = P ~ ~ I P  U o c a y a  = ~ ~ w / ~ ~ a n d P  = C ~ S ~ / P I *  
- 

These non-dimensions1 parameters have been assumed to be of order unity. 

Equation (8) shows that within terms 0 ( r )  , the modified pressure p1 - E u (2 or + 8)  ( 2  v/:, y)2 does 
not vary across the boundary layer, i.e. it is same within and outside the boundary layer region. If r 
denotes the pressure outside the boundary layer region, then 



F 

~ A B O A  : Oeoillatione of Fluide Near a Sphere 

The pressure 7~ is governed by 

1 3V e 1 a r  -- sv v - =- 
" 7 U, - +CT,L 3 l + r y  36 

(11) 

Negleoting the terms 0 (8)  in (9) and using (10) and ( l l ) ,  we obtain the boundary layer equation as : 

3 7 - Y 

Y 
?V y v  Q v  +-g- 2v" 3Yg m t e )  . (12) 

The equation of continuity (4) in non-dimensional form is 

The boundary soonditions (6) can now be written as 

The complex notation has been used here with the convention that only the real part of a complex 
quantity has a physical significance 

S O L U T I O N  O F  E Q U A T I O N  

To obtain an approximate solution of the boundary layer equation (12), we ex+d u and v in 
powers of e as follows : 

b =: u, + e u, + 0 (r2) ,, u = V, + e V, + 0 (ra) (15) 

The boundary conditions (14) become 
y = o :  Z6, =tl, = 0,Ul = v l =  0 ,  

Substituting u and v from (16) into (12) and (13) and comparing the coefficients of like powers 
of e on bath sides, we get 
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Solving (17) under the conditions (16), we get the first order solution as 

3 
vo = 3 {cos T - e--Al m s ( ~ - ~ d  sine , I 

where r] = ( ~ ~ 1 2  a )&  y , 
a - a 

A = 2 cos $. = 
(I.+$)( 

The condition that uo -t 0 as r ]  -c co cannot be satisfied and hence the solution is valid only near 
the surface of the sphere. - 

We use the solution (19) to obkain the second approximations u, and u, f&m (18). It is noted that 
the convective part of the inertia terms and the nsa-Newtonian t;P;1FFng & ($9 8)  will sontribute knns 
with C O ~ ~  T , which in turn will give terms withcos 27 , sin 27 andsteaQsstate tenns, i.e. time independent 
terms. The viscous terms will contribute terms with cos T and sin T. Taking this fact into account, we take 

The conditions on f, g and h are 

Substituting the expressions for tho and vo from (19) and that for v, from: (20) ipto (18 a), a& 
equating the co-efficients of like powers of ei7 on both sides, we get a s.et of ordinary differential equa- 
tione determining f, g and h. Solving them under conditions (21), we get f and h as follows : - 

o+n alao be obtained in a similar manner. - -  - -- - - - 
> 

Regar&% th s b d y  s tab  contribution f ( r ] )  , it is found that only the b o m d w  condition at  the 
wall  an be satkfied, and thGt at  a brge distanoe from-it, & is posaible @ make t&e hngential component 
finite but not mo. .  !Thus - 

L --- - - - 
The second approximatipn is seen to contain aabady state term which does not vanish at  a large 

distsnoe from the surface _o_f the sphere, i.e.,outsiae - - theboundary layer region. Its amigdiude i8 given by 
- .  

9 - 
(CO , 6 )  = - f (a) sin 28 , 8 - - 

oq, 
- ,. .- - 



SAROA.: Oileiflationa of Fluid N e a ~  8 Sphere 

The values off (m) have bem oalculated for (a, /3) = (0, O), (--0.1,0.5), I-- 0.2,1*0), (-0-3,162) 
and (-4.4, 1.6), and been given in Table 1. 

We proceed to study the secondary steady saeaming in detail. We introduce the stream function 
Y corresponding to this fbw in the following form 

n 

where 

The corresponding expression for F (?) for Newtonian fluid can be obtained from (25) by setting 
a = /3 = 0 and A = B = 1. Thus f i  (T) for Newtonian fluid is 

This i s  same as expression (32) in Riley. 

The positive zero of P (?) corresponds to a stream line which separates two cir&latory motions 
in each quadrant. The positive zeros of F (77) have been calculated for (u, /3) = (0, 0); (- 0.1, 0.5), 
(- 0.2, 1.0) and (- 0.3, 1.2). They are respectively at .r) = 1.628, 2.7,4.0 and 4.5. The flow 
pattern in first two quadrants has been shown in Fig. 1 for (a, j3) = (- 0.1, 0.6). 

The flow pattern for other values of a, /3 is similar to this except that the region of inner closed 
ciroulatory motion in each quadrant is expanded and outer motion is pushed away from the sphere with 
increase in values of a, j3. 

D R A G  O N  S P H E R E  

The drag D on the sphere is given by 

11 

= - i l  [ n c o s e + e u ( l + .  3 T L)(E) b y  Y = O  a n  . 6 ] sin B do (27) 
0 2 ag 

VALUES OF f (Q)) FOR DIFFERENT VALUES OP (a, 8)  
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Performing necessary integration, we obtain D within terms 0 (r) in the following form 

We note that the drag D on the sphere is purely osoillatory in character. The amplitude of its 
oscillations is given by 

I D ]  = 2 [ 1 + 2 e ( a A + B )  ( 2 a A B ) t l t  (29) 

The values of I D I have been calculated for various values of a when o = 1, c = 0.01 and have been 
given in Table 1. 

D I S C U S S I O N  

The corresponding results for the Newtonian fluid can be deduced from the above results by 
setting a = p = 0. 

A potential flow which is periodic with respect to time induces a steady secondary motion at  a 
large distance from the surface of the sphe~e. The magnitude of this steady streaming decreases with 
increaae in non-Newtonian parameters a and /3 . The peculiarity of the second-order fluid is that the 
magnitude of the steady streaming depends upon all the material constint though it is independent of 
viscosity in Newtonian fluid. This peculiarity has been noted by Srivastava & Saroao in that the 
location of the point of separation for flow of a second-order fluid past a circular cylinder depends upon 
all the material constants, though for Newtonian fluid, it is not ao. 

The drag on. the sphere is purely oscillatory in character. The amplitnde af.i& oscill~tione demeascs 
with increase in parameter but it is independent of p (and so of p,). The typioal flow pattern in Fig. 1 
shows-that, in each quadrant, there are two circulatory motions separated by a stream line. The size 
of the inner region where the stream lines are closed increases and the outer motion is pushed away from . 
the sphere with increase in the parameters. 
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