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The high frequency oseillations of second-order fluids near a fixed sphere have been considered. The pecu-
liarity of the second-order fluid is that the magnitude of the steady secondary streaming at large distance from
the sphere depends upon all the material constants, while for a Newtonian fiuid, this is not so. The drag on -
the sphere has been calculated for various values of the non-dimensional parameters formed out of the
material constants and the flow parameters. The outer motion is pushed away from the sphere with increase in
the non-dimensional parameters.

s

The small oscillations of a body in a Newtonian fluid at rest induce characteristic secordary flow
whose nature is such that a steady motion is imparted to the whole fluid inspite of the fact that the
motion of the body is purely periodic. This was first pointed out by Reyleigh! in his work on Kundt’s
dust tubes. Schlichting? has discussed the flow induced by a cylinder performing high frequency
oscillations along an'axis perpendicular to its generators in a viscous fluid.” He has shown that when
e = (U, /dw) << 1, the first order fluctuating flow is eonfined to a ‘shear wave’ region of thickness
O (v,/w)} , beyond which asteady flow O (e U, ) persists and is characterised by ¢ B = UZ o v;. Here v,
is kinematic viscosity. w the frequency of oscillations, U, and d are respectively & typical velocity
‘and length. He has used the Blasius boundary layer equation for plane motion thus neglcctirg the effect
of the curvature. Stuart®, Kelley? and Riley® have attempted such problems. Recently Wang®? has
derived the boundary layer equation for cylindrical surface in apother manner and showed that the
interaction of the curvature and the velocity is important in second approximation in e.

The boundary layer equation for an axisymmetric flow of second-order fluids past'a sphere have
been derived following Wang?. Using this equation, we have discussed the small oscillations of a stream
of the fluid along an axis of symmetry of a fixed sphere init. The flow so caused is equivalent to that
induced by a sphere oscillating along its axis of symmetry in the fluid at rest. Assuming that the
amplitude of oscillations is very snrall compared with the radius of the sphere, we have obtained first and
second approximations in € = U, /wd where d is the radius of the sphere, U the velocity at infinity
and w the frequency of oscillations. The magnitude of the steady streaming.at infinity and the drag on
the sphere have been caloulated for various v:}%ues of the non-dimensional parameters formed out of the
material constants and w. The typical flow pattern has been shown in Fig. 1. -

BOUNDARY LAYER EQUATION

' THe constitutive equation of an incompressiblé second-order fluid has been suggested by Coleman &
Noll® as : :

S = — p 8+ p A+ pp Bl + py A 4 (1)

where .
A= g, By = a5+ g ey, +
+ 2g% vg; vk @)

Si;is & stress tensor; pis an undetermined hydrosta-
tic pressure ; u,, py and p; are material constants; v
and @' are respectively velocity and acceleration
vectors, and a semi-colon denotes covariant differen-
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‘Fig. 1—The typical flow pattern in the first- and second’ tmtlon W.lth rgsp—ect 1.;0 the 5y mbol followmg it. g%
quadrants for (O, B)m(—0°1, 0*5). is “& ‘conjugate metric tensor.
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The Cauchy’s equation of motion and the equation of continuity are S J* /
R NI .
pa e Y Deln 1
vy =0 . itz e (4)

where pis the density of the fluid.

We consider a stream of a second-order fluid, which escillates with frequency w along an axis of
symmetry of a fixed sphere of radius d within it. We introduce a system of spherical polar coordinates
(r,8, ¢) with the origin at the centre of the sphere and 6" = 0 as the axis of symmetry. Letv, vy and
v4 denote the velocity components in the directions of r, 6 and ¢ respectively. The potential flow outside
the boundary layer region is given by - - S

YV (8,t) = -g—vw sinfooswt ' (5)
The boundary conditions of this problem are
| rV= d: v,=0_v;vgﬂ=10l", . . , oo
| r=d+38:0="0,9="V(01) R ' (6)
Here 8 is the boundary layer thickness. Theré is no ﬂoﬁf lin the diret'ition.()f ¢ and all entities are
independent of ¢ ; hence the flow is axisymmetric. co e ‘ o

We discuss the case when the amplitude of oscillations is very small oom_.pai,é& “with the radius of
the sphere, ie. e = (U, [dw) <<<1 . Assuming a thin boundary layer of order ¢, we 'introduce

RS S S B R
‘u_,er Vpy UV = U Qo,y_" € d — )

.oo
: 1 1 , v
r=ehp=oggs b= e o ()

All the non-dimensional entities introduced in (7) are of order unity. :Suuﬁgtitﬁﬁin'g (1) and (2); (3)
yields the following non-dimensional equation in the dire¢tions of y and 0 respectively. '

2 {—ntectatn (%)2} Fo@=0 ®

av UM LI WIS SR S BRSSP PP (:_v_)z 14
2t s (v By +035) == g {moeeestn () f 4

ro(ira) (Besedy) oot 2

ar 3y )
av\2 v Pu B Bv
+ (@)}wt””“{ 2y 78 T Yo TV agap T
av 3%y ok’
B + 30 Tag8 —20 Poe cot }+Q(¢2) 9
where ‘ o= pofpU3, 0 = pyafp and B = ps ofp . ,

These non-dimensional parameters have been assumed to be of order ﬁnity.

Equation (8) shows that within terms O (e) , the modified pressure p; — € o (2 - B) (20/2 y)? does
not vary across the boundary layer, i.e. it is same within and outside the boundary layer region. Ifw
denotes the pressure outside the boundary layer region, then .

r=p—eo(2at+p) (30/2y°. o (10)
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The pressure = is governed by °
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N ggl_ecting the terms O (?) in (9) and using (10) and (11), we obtain the boundary layex equa.tion as:
v 3 20 1 2V e 2V ( Kol
31_+e(u —-——l—-v .0) 7 37+U°°2V_5+a(1+“_)' yz+2c )——

2 . .
_503{203—% }coto-}-eaoc{” fy’ﬁ i?+
‘ #9

av 3% bl .

The equation of continuity (4) in non-dlmensmnal form is

cr

au
‘ 2y

The boundary condltlons (6) can-now be Wntten as
y=0:u=0,v= 0y

qB -+ v cot 0-|—e(.u—-y—’-—u-)=0 | (13)

y=28:1u =0, v—-—g-smﬂe (14)

The complex notation has been used here Wlth the convention that only the real part of a complex
quantity has a physical significance '
SOLUTION OF EQUATION

To obtain an approximate solutlon of the boundary layer equation (12), we expand « and v in
powers. of e'as follows

L':u—-zto-l-eul-}-O(e) v =1+ ev, +0 () ' (16)
The boundary condltlons (14) become - v '
y-—-O Uy =1y =0,u;, =0, =0,

y=28:uy=0,v= %- 7 gin 8 ul——vl-—() : (16)

Substituting « and v from (15) into (12) and (13) and companng the coefficients of hke powers
of ¢ on both sides, we get

‘ 2\ By ", 8 .. .
(a.)a(l—l—a 37) w;-— FT" =— o isinfe’,
. 17
3y 3% an
(b) 2y + 20 + v et 8 =0;
62’{)1 3”1'_ avo dY i 1 62'.7 : 20 q‘
(8) . 1+oc5; 2P g M 5y TR 58 T 6 (14 &) sin26— |
R 3%, 3% a’uo
_2 1 g e
3 °( te )33/ ”{ Yop T oy s T
9, ay, 2%y, - ' a’
 +o qf,’:o + 5o ﬂy: o T cot()}-{- L (18)
: a‘v . sv, \2 ‘
20, ~—2 ( =L )} t0
+ B{ g R -+ 2y
Iy By o
b — t0 -——=0
()3y+39+9100 + 2uy—y 2y ]
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Solving (17) under the conditions (16), we get the first order solution as

3 — Ay »
V= 5 josT—¢€ ' co8 (r—By) ¢ sind,

Uy = —3 (o] A B} {2 ycos 1 cos (r — ) + 6408 (r — By — ), cosb . (19)

where 11"=\ '(AB_/2‘ ;7’)*! Y s

A=2}cos¢~= (1~+ ﬁ:ﬁr)*
=ty = (1)

The condition that u, - 0as 7 - oo cannot 'bé satisfied and hence the solution is valid only near
the surface of the sphere. T )

We use the solution (19) to obtain the second approximations u, and v, from (18). It is noted that
the convective part of the inertia terms and the non-Newtonian tegmsin (18 &) will eontribute terms
with cos?7 , which in turn will give terms withcos 27 , sim 2r and steady state terms, i.e. time independent

terms. The viscous terms will contribute terms with cos rand sin'z, Taking this fact into account, we take

9 - S 3 f 2¢ \} ir .
| v;(n,0,f)= ?{f(q)—kg(n)ez' }sm20+ 5 ("Z_IT) h(n) ¢ sin 6 . (20)
The conditions on f, g and % are N
' B \t
f=g=h=0aty =0andy= (—‘;—;—) 8 (1)
Substitﬁting the expressions for g and % from (19) and that for v, froixi; (20) into (18‘a), and
equating the co-efficients of like powers of ¢!~ on both sides, we get a set of ordinary differential equa-
tione determining f, g and b, Solving them under conditions (21), we gét f and A as follows :
342 —4 , SR Y Sy ) 3—-942 .

. . 1 )
+ﬁ(2A5——.1)} + e AV” {(TB— +2m——ﬁ) cos Bqn + A_3B’_VCOS(B’7+2¢) —

—wcos (Br—29) — 2y { 08 (B + ) — .co8 (B — .p;}l i

“h(n) = ne__A" cOSVBn . ) - o (22)

¢.(n) can also be obtained in a similar manner. - e

Regarding the steady state contribution f (n) , it is found that only the boundary eondition at the
wall ean be satisfied, and that at a large distance from’it, i is possible {0 make the tangential component
finite but_not zero... Thus . - o :

11 = g A= U =8~ - (a4 rataa.

" The second approximation is seen bo contain a steady state term which does not vanish at a large
distance from the surface of the sphere, i.e. outside the houndary layer region. Its magnitude is given by
vy (,0) = 5 flw)sin2e . | 23
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The values of f (0a) have been caleulated for (a, 8) = (0,0), (—0-1,0+5), (— 0-2, 1-0), (—0+3, 1-2)
and (—0-4, 1:6), and been given in Table 1. o :

" We proceed to study the secondary steady streammg m detail. We introduce the stream function
¥ corresponding to this. ﬂow in the followmg form

. (za/AB)é sin05i1i20ff(n)dn =9(za/AB)"’ sin? 8 cos 8 F () “(24)‘
' 0

where

lF’(17)=,~1 nf(°°)+T6—1j. (1_“’“2’14’7 ){

3—;12Az +4:‘a( _1)2-;-/3(2A2—1)} i

gt e—Av {(”’A}f +3_oc_-—-B) s (B n+¢) — «ocos (Byg— §) —

e o (B +39) } B @)

. The oorrespondmg expressmn for F (y) for Newtonian fluid can be obtained from (25) by setting
a=pf=0 and 4 = B = 1. Thus Fy (y) for Newtonian fluid i is
21 5 1 1 _ . .
Fy (m) =;‘—‘ —'—‘8‘ 1 9 ¢ 2 _ T ¢ " (2 qsiny -+ 5 cos 9 -+ 3 sin'n) (26)

Thls is same as expression (32) in Riley®.

The positive zero of F () corresponds to a stream line which separates two clrculatory motions
in each quadrant. The positive zeros of F () have been calculated for (o, 8) = (0, 0); (—0-1, 0-5),
(—0:2, 1:0) and (—0-3, 1-2). They are respectively aty= 1-628, 2-7, 4-0 and 4- 5 The flow
pattern in first two quadrants has been shown in Fig. 1for («,8) = (~O -1, 0-56).

The flow pattern for other values of «, 8 is similar to this except that the region of i inner elosed
_ circulatory motion in each quadrant is expanded and outer motion is pushed away from the sphere with
increase in values of «, . :
DRAG ON SPHERE

The drag D on the sphere is given by

I e————————————— - . 2 ‘Y
D mdipw Uy f[S,,.GOSB Srosmo]r_-dzﬂd sin 6 d6
0 .
”
2[[17 8 (1 2 (.?”)  sin6 | sin 64 o7
cosf +ec +-a 37 ™ y=os' | sin | @
(1] G -
Tasre 1
VALUES OF f (%) FOR DIFFERENT VALUES OF (O, B)

(e B) (0-0) (—0-1,0°5), (—0°2,1-0) " (—0-3,1-2) 0416
J(x) —1-2500 —1-0396 0-8016 o 7re8 e
o . 0 —90-1 —0-2 03 > W

1D} 2-028 2-027 - 2025 2:024 2028
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Performing necessary integration, we obtain D within terms O (¢) in the following form
D=—2{i+e(l+sa) (4+iB) 204Bp}" . (28)

We note that the drag D on the sphere is purely oscillatery in character. The amplitude of its
oscillations is given by

|D] =2[1+4+2¢(x 4+ B) 2c4Bj} : (29)

The values of | D| have been calculated for various values of @ when o =1, ¢ = 0:01 and have been -
given in Table 1.

DISCUSSION
The corresponding results for the Newtonian fluid can be deduced from the above results by
setting @ = B = 0.

A potential flow which is periodic with respect to time induces a steady secondary motion at a
large distance from the surface of the sphere. The magnitude of this steady streaming decreases with
increase in non-Newtonian parameters « and g . The peculiarity of the second-order fluid is that the
magnitude of the steady streaming depends upon all the material constent though it is independent of
viscosity in Newtonian fluid. This peculiarity has been noted by Srivastava & Saroa® in that the
location of the point of separation for flow of a second-order fluid past a c1rcular cylinder depends upon
all the material constants, though for Newtonian fluid, it is not so.

The drag on the sphere is purely oscillatory in character. The amplitude of its oscillations decreascs
with increase in parameter but it is independent of B (and 50 of py). The typical flow pattern in Fig. 1
shows-that, in each quadrant, there are two circulatory motions separated by a stream line. The size.
of the inner region where the stream lines are closed increases and the outer motion is pushed away from .
the sphere with increase in the parameters.
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