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Temperature distribution in a viscous incompressible fluid flowing between two parallel porous flat plates has
been investigated when thelower plate is injecting the fluid while the upper oneis sucking it with the same
rate. Viscous dissipation has been neglected and the rate of heat generation per unit volume per unit time
has been taken to be a function of time. Laplace transform technique has been used o obtain an expression
for the temperature distributicn. Taking the rate of heat generation as an oscillating function of time,
numerical work has been done to. demonstrate the effects of the variation of the cross-flow velocity on the
temperature distribution.

Berman? has obtained an exact solution of the problem of steady flow of a viscous incompressible
fluid through a porous annulus, when the rate of injection at one boundary is equal to the rate of suction at
the other. Satya Prakash? has discussed the unsteady flow of a viscous incompressible fluid between two
porous flat plates, when the rate of injection afone plate is equal tothe rate of suction at the other.
Krishna Lal3 obtained the temperature distribution in a channel bounded by two coaxial circular pipes
with time dependent boundary temperatures. He, however, made a physically unrealistic assumption
that the temperature increases unboundly, which was corrected by Bhatnagar & Tikekart.

In this paper we obtain the temperature distribution in a viscoushincompressible fluid between two
porous flat plates, maintained at constant temperatures, with equal rates of injection and suctlon at the
lower and upper plate respectively. ,

FORMULATION OF THE PROBLEM

For the two dimensional incompressible fluid flow, the energy equation neglecting the viscous
dissipation is
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where the lower plate is taken to be the axis of  and y is measured at right angles to it ; » and » are the
velocity components in the directions of z and y; p, the density; Cjp, the specific heat at constant
pressure; K, the coefficient of thermal conductivity and 3Q/3t the rate of heat generation per unit .
- volume per unit time in the fluid. )

Because of the condition that the suction rate at one plate be equal to the injection rate at the other
and the assumption of constant wall temperatures, the fluid temperature 7' does not depend on z; hence
the (1) is reduced to S
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Satya Prakash? ha.s shown that the velocity component in the dlrectmn of  does not depend on » and

the cross-flow velocity is given as
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where v, is the copstant velocity of injection and suction.
Equation (2) therefore becomes
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The initial and boundary condltlons are - , -
| z==<>’:1'~1'1 for 0ygch 1
t> 0 I = TIA for y=10 % - (5)
. \ T =T, for-y=hj :
where 4 is the ’distance between the plates.

METHOD OF SOLUTION
Introducing the following dimensionless quantities -
’ ‘ -1,
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in (4), we have ' o Ny '
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where - . R= LS and Pr = kOs
; . v / K
are the Reynolds number and Prandtl nimber respectively.
. The initial and boundary conditions in terms of the non-dimensional parameters are
) £ =0: 0=0 for 0 gl )
e T 0T 8 =0 for-n=0 - % )
6 =1 for =1 J
.< o ‘ o R o= T - S
Let us define ’ G(n,s8) = f 0(n,)e dt’, V ”7;&;'«:, R
0
and ‘ ‘ f (8) = f I (t') Lo dt'
where § (7, s) and f (s) are Laplace transforms of 0 (11, t') and f (t’) respectwely
Taking Laplace transform of (7 ), we have
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where Pe = RPr is the Peclet number and fu is the value of f (') at ¢ = 0, and the boundary con-
ditions (8) are reduced to : -
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The solution of (9) in view of (10) g
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Takm,g inverse Laplace transform of (11), we get
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F (s) and G (s) admit simple poles at
Pet 2 2
§ == ~m _e_—_{;__;zr__n__ (n=0,1,2,......)

Evalnating residues at these simple poles, (12) becomes
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which glves the temperature distribution of the fluid in the channel.
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Fig. 1—Temperature dlstrlbublon forPr=1,R=s1 Fig. 2—-—-Tempemture distribution for Pr==1 and #'=mu/2
: and ¥ = 0, #/2, 1r, 37/2 and 2. . ) for R =10, 1, 2 and 4.

NUMERICAL DISCUSSION
Taking f () = sin ¢', (13) is reduced to -
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For numerical work, we take Pr — 1and R = 1 and obtam dliferent values of 0‘*561‘ values 0f17
varying from 0 to 1 for ¢’ = 0, /2, m, 3x/2 and 2z ; which have been shown in Fig. 1. We note that the
temperature in the neighbourhood of the plates fluctuates according to heat addition, as the time increases,
Fig. 2 shows the effects of the variation of the cross-flow velocity (R == 0, 1, 2 and 4) on the temperature
distribution when ¢’ = @/2. Itis found that &‘ue to porosity of the- pla.tes the tempera.ture decreases
as the cross-flow velocity increases.
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