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Temperature distribution in a viscous incompressible fluid flowing between two parallel porous flat plates has 
beeninvestigated when the lower plate is injecting the fluid while the upper oneis sucking i t  with the same 
rate. Visoous dissipation has been neglectect and the rate of heat generation per unit volume per unit time 
has been taken to be a function of time. Laplace transform technique has beon used ta obtain an expression 
for the temperature distributicn. Taking the rate of heat generation as an oscillating function of time, 
numerical work has been done to demonstrate the effects of the variation of the cross-flow velocity on the 
temperature distribution. 

Berman' has obtained an exaot solution of the problem of steady flow of a visoous incompressible 
fluid through a porous annulus, when the rate of injection a t  one boundary is equal to the rate of suction a t  
the other. Satya Prakasha has discussed the unsteady flow of a viscous incompressible fluid between two 
porous flat plates, when the rate of injection a t  one plate is equal to the rate of suction at the other. 
Krishna La13 obtained the temperature distribution in a channel bounded by two coaxid circular p ip s  
with time dependent boundary temperatures. He, however, made a physically unrealistic assumption 
that the temperature increases unboundly, which was corrected by Bhatnagar & Tikeka9. 

In this paper we obtain the temperature distribution in a visco~~incom~ressible fluid between two ' 

porous flat plates, maintained at  constant temperatures, with equal rates of injection and suction at  the 
lower and upper plate respectively. 

F O R M U L A T I O N  O B  T H E  P R O B L E M  

For the two dimensional incompressible fluid flow, the energy equation neglecting the visoous 
dissipation is 

where the lower plate is taken to be the ;xis df s and y is measured at  right angles to it ; u and v are the 
velocity components in the directions of x and y ;  p, the density; Cp, the specific heat a t  constant 
pressure; K, the coefficient of thermal conductivity and aQlat, the rate of heat generation per unit 
volume per unit time in the fluid. 

Because of the condition that the suction rate at one plate be equal to the injection rate at  the other 
and the assumption of constant wall temperatures, the fluid temperature T does not depend on x ; hence 
the (1) is reduced to 

Satya Prakasha has shown that the velocity component in the direction of s does not depend on x grid 
the cross-flow velocity is given as 

where vo,is the copstant velocity of injection and suction, 

Equation (2) therefore becomes 



where 

The initial and boundary condithna are - 
' 

t - 0  : T = T 1  for OdYkh 7 - 
t > O  : T = T 1  for ( 5 )  

T = T2 for y = h . . 

where h is the distance between the plates. 

M E T H O D  O F  S O L U T I O N  

Introduoing the follawing dimensionless quantities, 

in (4), we have 

ae 30 -+~j;= at1 +($+f) ,  
where 

five R =  - PCP and Pr = - 
v K . 

are the Reynolds number and Prandtl numbe~ respectively. 

The initial and boundary conditions in t e rn  of the non-dimensional pawmeterx are 

t 1 = 0 :  8 = O  for O < q < 1  2 

- - 8  - -t' > 0-:- -8 0  for - q  = 0  (8) 

e = l  for q = l  f 

Let us d e b e  

and f ( 8 )  = J (t) .e-# dtD , - 
0 - . - 

+re 8 (7, S )  and $ (s) are Laphoe tramforms of 0 Cq, t') and f (t') respectively. 

Taking Laplace transform of (7), we have 

where Pe = RPr is the Peolet number and lo iis the value, off ( t ' )  at 8' = 0, and the boundary wn- 
ditions (8) are reduced to 

a - - 0  for q = O  

m - - 1  '8 =:- for q  P 1: -. 
S 



The mlution of (9) in view of (10) is - 

. e(Pe/2) 9 

sinh 
z / P Z + 4 s P r  - 

2 

where 

Taking inverse Laplaoe transform of ( l l ) ,  we get 
4, 

4 Pea + 4 s Pr ] a i d  
. 2 7)  

P(a)=  - . - i i 

1 4 Pea + 4 s  Pr sinh - - 
1 2 J i t  

i .  
and 

4 P e a + 4 s P r  1 
sinh --- (1 - 7) )  1 

- G ( )  = L 2 

1 BiRh 
d P e a + 4 s P r  

2 

P (8)  and G (s) admit simple poles at 

Evaluating residues at these simple poles, (12) becomes 

2 n n & ( n w q )  
Pr X 

n=O 

t' 
P$ $ 4  s a  la" 

0 

Y 

+ e(Pe12)~ 2 s n sin (n  IT r l )  
Pr 

n=O 0 

(t' - u) } duy (13) 

which givaa the temperature distribution of the fluid in the channel. 



8 
Fig. 1-Temperature distribution for Pr = I, R - 1 

and t' = 0,  n/2, n, 3w/2 and 2n. 
Fig. 2-'Qsnperature aistribution for Pr=l and tt=*/2 

for R = 0, 1,  2 and 4. 

N U M E R I C A L  D I S C U S S I O N  

Taking f ( t ' )  sz sin t', (13) is reduced to 

1 - (Pel21 (1 - 7) 2 ?r n sin ( I ~ , ~ W  7) 
0 (T, 1') = s h  t* - e Pr X 

1 x [T ( ~ - - e - ~ ~ * )  - A%+ I .  ( A sin .t' - cos t1 + e- A t t )  1 - 

Pe2 + 4 n2 na 
where A = -- 

A $'r 

For numerical work, we take Pr  = 1 and R -  1 and obta5 different values of Ffbr values of 7 
varying from 0 to 1 for t' - 0, 42, 9, 3r j2  and 2" ; which have been shown in Fig. 1. We note that the 
temperature in the neighbourhood of the plates fluctuates according to heat addition, as the time increases. 
Fig. 2 shows the egects of the variation of the cross-flow velocity (R =-= 0, 1, 2- and 4) on the temperature 
distribution when t' = v/2. It is found that due to porosity of the- plates the temperature decreases 
as the cross-flow velocity increases. 

The author wishes to express Bis gratitude to Dr. P. D. Verma for his &ad guidance during this 
investigation. Thanks are also due to Prof. P. L. Bhatnagar for his stimulating encouragement. 
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