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An approximate closed form -solution to the internal, conical, inviscid, hypersonic flow about a eircular
oone at zero angle of incidence, has been obtained based on assumption that dissociation, and ionization
eto. do not occur behind the shock wave. It has been shown that a singularline exists beyond which the
solution is not valid. )

; The numerical solution of steady, inviscid, supersonic or hypersonic flow overa circular cone at zero
angle of incidence has veen obtained by Taylor & Maeeolll. An approximate closed form solution of the
above problem hasbeen obtained by Pottsepp?. Zienkiewics? has obtained the closed form solution in the
presence of dissociation. They have considered that the flow downstream of the shock is irrotational and
thereis no characteristic length involved in the problem and hence all flow properties behind the shock
depend upon 8 only. But they have not discussed the oceurrence of singularity which limits the down-
stream extent of the flow. Moldert has discussed the existence of singular linein the case of internal,
axisymmetric, hypersonic, conical flow pasta circular cone by numerically solving the Taylor-Maccoll
equation. '

Following Pottsepp?, we have obtained an approximate closed form solution which is valid only in
the region between the shock and the singular line. The present investigation provides an analytical
method for caleulating an axisymmetric duct or inlet leading edge shape for a given leading edge shock.

BASIC EQUATIONS

‘We consider an infinite solid circular cone set at zero angle of attack in a uniform inviscid supersonic or
hypersonic calorically and thermally perfect gas. It is well known that if the cone angle is less or the free-
stream Mach number is greater than a certain critical value, an attached straight shock wave springs from,
the vertexl. If we assume that viscosity is zero and thermodynamic- equilibrium exists, then all the flow
properties downstream of the shock wave depend only on ’t{éa’ngular variable 8, there being no char-
acteristic length in the problem'3. Let us assume a spherical polar co-ordinate system at O with 6 measured
from the free-stream direction and r measured radially from O as shown in Fig. 1. At the shock cone,
6 =y, the angle between the shock cone and the free-stream (the shock angle) is the same at all points on
the cone surface?.

Under these conditions, the equation of continuity is:

d . :
W(pvsm0)+2pusm0=0 (1)
and the momentum eqﬁ?ﬁéons in the r and 0 directions are : .
. . 7 .
=0 - @
dv 1 dp B .

where u, v denote velocity components along r and 6 directions, p is the density and p is the pressure.
Equation (2) implies that the How downstream of the shock is irrétational and therefore homentropic?,
Let us define the velocity of sound, , by the relation (3p/2p), = a2, where the suffix s, indicates that the
derivative is taken at constant entropy and thermal equili,briu.m. Although the sound waves may
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propagate at somewhat different speeds, depending upon their frequencies, the above definition of sound is
consistant with the assumption of zero viscosity and relaxation time®. The magnitude of the free-stream
Mach number is taken such that the temperature behind the shock wave is not so high that vibration,
dissociation etc, might appear. Hence the fluid can be assumed to be a perfect gas with constant specific
heats. From equations (1) to (3), we get®? : : : .

0\ d2u S du o2 .
(1) et )o@
For a high free-stream Mach number, which is normally encountered in hypersonic flow, the shock layer
is thin and v is small compared to a. Therefore :it is reasonable to neglect (v?/a?) compared? to 1. Under
this assumption, (4) reduces? to

d2u o du )
w7y cothWf{— Qu =0 (5)
The boundary conditions are obtained from oblique shock? relations :
At ' 0=y:u=gq, cosy
T g
v = —5

(K —1) M, 2ty +2 | .
— g (K+1)M:’si1lf2¢ sin 6

where g, M, and K are respectively free-stream velocity, free-stream Mach number, and specific heat
ratio. ' C

~

SOLUTIONS OF EQUATIONS

For a given semi-vertical angle of the cone, thereis a critical free-stream Mach number for which the
shock waves are attached3. Therelation between the free-stream Mach number (M, ), the semi-vertical angle
of the cone («), and the shock wave angle (;)—which is measured from the axis of the cone as shown in

Fig. 1, can be expressed? as :
2{B+ln (—-I-—SM——)—~seo¢l} :

—co8 ;"
(& +.cos 2,) -

_ . (7)
A m____'/Jl ‘
8in2 y/; o8 i, +2{B+ln (7,11003'/'1 )} '

' ‘Mm = C08ec

where

B=_ ln( sina -\ - cos«
, 1—cosa sin? o
SINGULAR LINE The relation between ¢ and ¢, is given by
¢ = m — i (see Fig. 1)
© After the determination of the shock wave
angle for a given free-stream Mach number and semi-
-y/ > vertical angle of the cone, we shall obtain the solution
§%

* of (5) under the boundary conditions given by (6) :

SHOCK WAVE

NGUL AR LINE in @
St A u:Alcose[Bl-l—tn(—l—E——) ——secB]

— cos 0
(8)
e ’ .
du . sin 8
; v A=v = f‘Al sIm 0[31 +in (m)+
d o - “ée] o Y
Fig. 1—Internal conical flow, ’ / sin26 ' ‘ !
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where’ , ~ i
A — 240 1 — M 2sin?g)cos g
e C E+DME e
B ( sing \, 2+ M3+ ocos2y)
157 M \i—cosy) T (T — M, 2sin® §) cos §
Making the velocities non-dimensional with respect to velocity (gmqy) » We have :
- ' Togin8 oy i
= A [B]_-—}— In (m) — 880 4 ]908;0 ‘ ‘ _ (10)
T sin 0 cosd T . )
‘U—-——*A[Bl—l—l%(-m) W]Slno ) (11)

’where

- (1—M _3sind ¢) cos ¢
A=12gq, E /A
- [ (E—1) M2 7}

Ao T 2 E—D M3 ]

The restﬂﬁant velocity (g), can be expressed as:
¢ =2 [{Bl + In (—-—-———1 pr )1 -+ cosec? 0 ] ‘ (12)

The resultant velocity at the shock, g,, can be obtained by putting & = ¢ in (12). The relation between
free-stream Mach number, M ) and Mach number ]ust behmd the shock, M, , is given by

—1

M_3ginty

K—1
2

14
M2sin? g =

(13)
KM_%sin? § — ‘

where

si%ﬂ/é =-1 — (—%—)2cos§¢

The relation between Mach number behind the shock (M), and the Mach number just behind the shock
(Mg)y is expressed as :

M2 qﬁ )
Mz’ (Qz ~ ¢

M2 —

(14)

¢? +
where M is obtained from (13).

The static pressure at any point downstream of the shock is related to the static pressure just dehind
the shock by :

— a2
g wx =14 5t g (1- L) ()

2

The pressure just before and after the shock is given by well known Rankine-Hugoniot relation. The
velocity components in Cartesian system are expressed as :

@i, = @& c08 § — D sin 6

E '  fy = uam0+'vc030j. (16)
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The flow defection angle ¢ is given by: 7 -
: _tan ¢ =~'§gf§,l - o - (17)
In the neighbourhood of the singulaz line, the value of M changes very rapidly. Hence, the validity
of the solution is confined in the region bétween the shock wave and the singular line. As a sample
calculation, when M, = 6-11,& = 30% K = 1:4, ¢ = 145°, the singular line occurs when 6 = 96-2°,
while according to Mélder?, it occurs at 8 = 95-3°%. L e .

APPLICATIONS AND CONCLUSIONS

In external flow, the exact solutions about a shatrp-corner, a wedge and a cone have been used to
calculate flows about bodies of complex shapes.. The present solution is an internal closed form solution
and.can be used to eheck the &pplicability of the internalmethod of eharmcteristics, tangent cone, tan-
gent wedge, and shock expansions methods to internal flows. The present method (kmown as Internal
Conical Flow) provides means to calculate axisymmetric duct or inlet leading edge shape for a given
leading edge shock. This method shows that the solution is not valid beyond the singular lines.
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