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Abstract. A mathematical analysis of the free convection flow of an inwmpressibk 
viscoelastic (Rivlin-Ericksen) fluid from an infinite flat plate under variable suction 
acted upon by a transverse magnetic field is presented. It  is found that the effect 
of viscoelasticity is to appreciably alter the skin-friction. 

1. Introduction 

Lighthillt discussed the unsteady laminar fluid flow in boundary layers. Later 
Messiha2 considered the free convection flow problem for the laminar boundary layers 
pertaining to a vertical flat plate with constant suction and an extension to the hydro- 
magnetic case was taken up by Pop3. Then Krishna La14 extended the above problem 
to variable suction for the oscillatory-type motion. Further, Krishna La15 mathemati- 
cally analysed the magnetic boundary layer equations, using linear and spiral group 
transforms after obtaining similarity solutions. 

Harinath & Ramesan6 considered an unsteady motion of an electrically conducting 
incompressible viscoelastic fluid through a porous medium bounded by two infinite 
parallel plates in the presence of a transverse magnetic field and extended certain results 
on the oscillatory motion of a homogeneous isotropic Rivlin-Ericksen (viscoelastic) 
fluid between parallel plates considered earlier by Siddappa & Shanker Hegde7. The 
problem of an unsteady viscoelastic flow through a circular pipe was solved by 
Harinath, Madegowda & Ramesans and various extensions are currently under progress. 

For some other viscoelastic flows we refer to Verma, Choudhry & Rajvanshi9 and 
Dubey & Sharma1° and for a convection flow past a porous wall, we refer to Siddappa 
& Bujurke'l. A comprehensive account of several theories of applied mechanics may 
be found in the treatise by Duvaut and Lionsz2. The basis for the theory outlined 
here is the classic paper by Rivlin & Ericksenm. 

The aim of this note is to undertake the mathematical analysis of a free convection 
flow of an incompressible Rivlin-Ericksen fluid from an infinite plate under variable 
suction acted upon by a transverse magnetic field. The problem considered has 
immense applications in various branches of engineering and sciences, such as, soil 
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mechanics, hydraulics, ceramics, powder metallurgy, etc. and to geophysics, mainly in 
the study of geopressurized regions in the earth's crust. 

2. Basic Equations 

Suppose we consider an infinite vertical flat plate in an incompressible viscoelastic 
fluid. We set up a rectangular cartesian coordinate system (x, y, z) in such a manner 
that the z-axis is along the vertical, the x-axis lies along the plate and the y-axis is 
perpendicular to the plate. Initially, the entire media is maintained at a constant 
reference temperature To and a uniform magnetic field of strength Bo/p, where p is the 
magnetic permeability of the fluid and Bo the initial magnetic induction is applied 
perpendicular to the plate. We use the constitutive relations due to Rivlin and 
Ericksen & assume that the cross-viscosity coefficient is small. In addition the electri- 
cal conductivity rr is assumed to be quite small, so that the governing equations are 
further simplified. 

If U denotes the component of velocity along the plate and V is the component of 
velocity perpendicular to the plate, the governing uni-dimensional differential equations 
describing the free convection flow of a viscoelastic incompressible fluid with magnetic 
field past an infinite vertical flat plate are: 

u,, -I- v,, = 0 (1) 

where T is the temperature deviation in the boundary layerfrom To and v denotes the 
suction velocity. p, k, q, a, @ respectively represent the density, the coefficient of thermal 
conductivity the coefficient of volume expansion, the coefficient of viscosity, the 
coefficient of viscoelasticity; g denotes the acceleration due to gravity, t the time 
variable and commas indicate partial differentiation. It may be noted that if gravity 
effects are ignored, then there would be no coupling between the temperature and 
velocity fields. In case we assume that the normal component of velocity Vis indepen- 
dent of y, then V = - yv( t )  is a plausible solution, where y > 0 is a measure of the 
suction velocity. We assume that V is independent of y, so that the equation of con- 
tinuity (1) now has the form: U,Z = 0. 

3. Solutions 

The unknown functions in this problem are the coupled functions -the temperature 
T(y, t) and the velocity U(y, t )  along the plate. The velocity of suction v(t) is assumed 
to be a variable quantity given as a finite sum 

where A is a constant, w is a frequency parameter, i = (- l)l's and e is the perturba- 
tion parameter, very small compared to unity. 



Note on a Viscoelastic Convection Flow 209 

In terms of e < < 1, we express the unknown functions T(y ,  t )  and U(y, t )  in thq 
boundary layer as the finite sums 

T(y ,  t )  = To(y) C T,(y) reiwt + ... + Tn(y) rnenfvt (5) 

U(y, t )  = Uo(y) + Ul(y) refwt + ... + Un(y) rnenimt (6) 

using self-explanatory notations. 
The various 2n + 2 unknowns To(y), . . ., Tn(y) and U,(y), . . ., Un(y) occurring in (5) 

and (6) are subject to the following boundary conditions 

(i) whenever y = 0, U = 0 and T = 1 + eeiwt + ... + rneniwt 

(ii) as y - too ,  T +  Oand U-+ 0 

in terms of the temperature and the velocity. 

Substitution of Eqn. (5) in the differential equation (2) and equating the various 
powers of r leads to n + 1 second order ordinary differential equations which have to 
be solved successively using the boundary conditions. After routine calculations we 
arrive at the following results 

To(y) = e-so(Y) 

I where 

so = y/K > 0 (7) 

iAy2 - W K  e - s l y )  = (2$. e-soq- 
wK 

where 

1 
q = %[y + d y a  -I- 4 b K I  (8) 

T2(y) - (Coe-S~y - Cle-s~y  -I- C,e-*sY) (9) 

where 

The other functions T,(y), . . . may be successively calculated. Hence T(y,t) is deter- 
mined. 
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Substituting Eqns. (5) and (6) in Eqn. (3) and equating powers of r,  we obtain 
n -t 1 second order differential equations for Uo(y), ..., U,(y). Solving these under 
the indicated boundary conditions and the above obtained solutions (7), (8), (9) we are 
lead to the solutions 

where 

where 

PY * - -  
' I  - a + iwQ + J(& :TOP)). + 4(aB: + imp) a + iw$ 

f(s) = s2 - py s -  aBE + iwp 
u -+ iwP ci + iwp 

Proceeding in the same manner we can calculate U2(y),  . . . and finally the velocity 
U(y ,  t). This therefore completes the theoretical calculations pertaining to the solutions 
of the temperature and the velocity. 

4. Discussion of Results 

The rate of heat transfer Q from the plate to the fluid and the skin-friction coefficient 
calculated from the shearing stress r ,  have the following expressions 

Q = - (KT, y) Iv-o r = (a U, y)  1 LO (12) 

These are calculated by using the above solutions as 
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T = aK(y/K - s; ) 

For I ( > > y Eqns. (13) and 14 yield the following approximations in which the 
~ontributions due to viscosity, viscoelasticity, magnetic field, gravity are clearly 
pronounced 

In equations (15) and (16), we note that the viscosity occurs as a factor in most of the 
terms. Since electrical conductivity is assumed to be small, the effects of viscosity and 
viscoelasticity are primary while the magnetic effects are secondary. 

In the case of constant (magnetic) suction, some of the above expressions take 
neater forms, but still the heat-transfer and the skin-friction dependon the various 
parameters. 

- - 
pK2ga?A 

B (crK2BB: - yam) ( P  + .a 
+ pgra(1- i) JE 

5. Conclusions 

+ 

Fromequation (15), we observe that as I w I increases, Q decreases. i.e. the rate of 

- p2gqycr.2KaA 
= P B :  - y2a) [py 4- J p f t y 2  + 4aBo2aI 

+ 2ipS"gaq PK 

6 ( G K ~ B ~  - y2a) 
1 

- 
+ 

(.K2B: - y'a) (py + JpaY24cr~:a) - 

heat transfer diminishes. Also from (15) we note that y and Q increase or decrease toge- 
ther. It is clear from Eqn. (16) that the effect of viscosity as well as viscoelasticity is to 
appreciably alter the shearing frictional force in the boundary layer. The expressions in 
(16) also reveal the fact that for highly viscous fluids in which the viscoelastic coefficients 
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are significant, the skin-friction coefficient is almost negligible for large I w I and that 
the magnetic effects are secondary when compared to the viscoelastic effects, even 
though there is coupling of electrical conductivity, magnetic induction and viscoelasti- 
city. Moreover, the expressions (15) and (16) are easily amenable for numericat 
computations. 
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