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An attempt has been made to study the steady laminar flow of a viscous incompressible electrically
conducting fluid between infinitely long concentric rotating porous cylinders under the influence of
.- radial magnetic field. A solution has been obtained under the assumption of uniform conditions
_ along the axis of the cylinders. The cylinders being porous, a hyperbolic radial velocity distri-
bution has been superimposed ovel the circumferential velocity produced due to rotation. There
is a Bernoulli-type pressure variation in ‘the radial direction. Wgen the inner cylindet is ab rest,
the shearing stress at it and the torque transmitted to it decrease as "B (=v,y,/v = vy, /v) incregses
and the magnetic parameter A (=4op,24%u) will farther decrease them.

Couette first obtained the exact solution of the Nav1er-Sto<kes equations for steady
laminer flow of a viscous incompressible fluid between two coaxial rotating cylinders.
Sinha & Choudhary® have discussed the same problem with uniform radlal velocity
imposed at the surfaces. They have also shown that R = —2 is a critical value at which
the results take indeterminate forms. This difficulty will not arise when the magnetic
_field is present and that is why we have discussed the inagnetohydrodynamm flow in the
present paper. The present problem is trected for radial magnetic field A/y, where 4 is a
constant and y 1s the radial distance from the axis and the solution obtained agrees with
all special cases heretofore available. - .

The case when the inner cylinder is at rest and the outer rotates has some practical
importance. The circumferential veloclty distribution, the shearing stress at the inner
cylinder and the torque transmitted to it decrease as R increases and the magnetic para-
meter A will further decrease them:. , .

NOTATIONS
(y, ¢, ) = ylindrical polar coordinates
(v, w, u) = radial, azimuthat and axml velomty components Ty
p = density of the fluid '
v = kinematic v1scos1ty
Y1, Yo = radii of the inner and outer cylmderq i

o = electrical conductivity of fphe fluid
magnetic permeability

I

He
B, = electromagnetlc induetion
4o pp A2
A = magnetic parameter = ——a——’f;————

vy, vy = cross-flow velocities at the walls of the inner and outer cyhnders
w;, w, = angular velocities of the inner and outer oylinders

' p = pressure
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. == = cross-ﬂow Reynolds number - o
7 = dlmensmnlessy Coordmate—- % ST T
. ECA R : :
k= LN >1
0 \)

BASIC: EQUATION‘S :
The equation of motion for la}mma.r ﬂow of an mcompresmble, electmcally conductmg
fluid is, in the usual nota.tlon, ‘ o

P g gradp+wzv+1J><B),w,,,y (1)

—
where J and B are gwen by Ma.xwell’s equa.tlons a.nd Ohm 8 la.w

The equation of continuity is

CawFeo. @)
For steady flow between two, rotatmg porous cy]fmders“ the follﬁwmg assumpismns '
are made :

_(a) The total excess cha.lge denswy, the 1mposed electnc ﬁeld mbensny, an(f the
induced magnetic field are zero (Rossowz),., '

(b) Electri¢al conductivity- ¢ of the fluid is. very large 80- tha,b the dlsplaqement
current is neglected, o S 4
. (¢) No external electric field is a.pphed Lo ‘ ,
(d) A magnetic field of strength Hy= Ay is apphed n; the radw,l, dlrecmon ‘
() u = 0 , for motion due to rotation only,
(f) gv/az = 0, for uniform suction and injection throughout the whole: lengths,
(8) awfax = 0 for circumferential veloeity produced due to rotation only

With these assumptmns (1) and (2) are zeduced simply to

-ﬂ-——ﬁ)——— (\820 ;.‘1 av‘ v«)\ \
”(” Wy Tty ) @

{ aw w \. ' 32w 1 qw  w.\.
\P,,v ( 33/ + —g—) = ( 8?/2 +‘7327 ""‘ 52") -—-0”1,62 H02w ) (4)
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Equation (B) states the condition of uniform pressure dlsﬁn‘butmn a.long the ax1s of the
cylinders. : i

Substituting from (6) 1nto ’3) we get LT
IR - v 4 w? P

Y 3y (@
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. Equation (7) gives Bernoulli-type pressure variation in the radlal direction, which ‘will

not be discussed further in the present investigation.

“other.
Therefore vy =0y
From (6 and (8), we get ”
vy = "’2!/2 = ”1?/1
Subsﬁxtutmg from (9) into-(4), we get ‘
1—R) dw
. _w'+(y) @y
‘The boundary conditions are -

A w

y9
W= $yw; When y =y |
a.nd ' w. = Yawe whon y = Y3 :

Let us introduce the following dimension_lesé quantities:

17 = l 1 U = w “ » vr N '= \:‘—“.'ylw—l ..
: . , Ya®e Yo
Equation (10) then becomes - n
2U U
g+ Rmf——(1+R+ $)v=0,

with the boundary conditions
U=N when 7 =1 1
J: 1 when 7 =k }
Thé solation of (13)<%vith the boundary condmons (13) is
(1= Nk”) "l"“ + (NE™ — 1) "2“

U =

(k™ — &) .
 where I R+J(R42—2)%+‘;}§ ’ }
and = R—~{‘(R-';2)2+A}a"_.
When the inner cylinder is at rést and the outer rotates;
and w k(™ — "),

x| B —F)

We now assume that the suction rate at one wall is equaI to the injection rate at the
(8)

-9

o)

(11)

R (12;)

(13)

(14)

(16)

The dlstnbutlon of circumferential velocity fot various values of B and A and k= 1B
is shown in Fig 1.- It is noted that the circumferential velocity at any pomt msule the

" channel decreases L R increases and A will further decrease it,
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Fig 2-Bhearing stress at'the inner oylinder
7/u wg vs R when the inner cylinder
i8' at rest for various values of A.
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Fig 1—Circumferential velocity distribution wy e,
vsn == yly, for varions values of "B and )
when the inner cylinder is at rest.
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The shearing stress at the inner cylinder is .
: T E{RBL+2242ap
R it R 4o
The shearing stress has been calculated for various values of R, Aand b = 1-5 and the
results of calculation have been plotted in Fig 2. From this figure it is obvious that the
shearing stress at the inner cylinder decreases as R increases and the magnetic parameter
A will further decrease it. S - -
The torque transmitted by the fluid to unit length of the inner cylinder is -
' il _{@®B+2242 4

: Trpon YR KB (17
— From(16)and (17), we get . -, _
()= ()
. rposyp ) ® \map )’

- and hence the torque transmitted by the fluid to unit length of the inner cylinderalso
decreases as R and A increase. : ‘ ‘

~ Proceeding to the limit when R=0, we kgeﬁ the results of Rammamorthy3, The
results of Sinha & Choudhary? are obtained when A = 0. . .
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