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Abstract. Theelasto-dynamic problem of a finite cylindrical cavity In an infinite 
elastic solid has been studied. In order to satisfy the radiation conditions at  infinity, 
the solution has been assumed in terms of Spherical Hankel functions and in order to 
satisfy the conditions at the boundary of the cavity, the method of least square 
approximation has been used for the minimisation of the errors on the boundary. 
The radiation patterns of displacements are given for two sets of frequencies and aspect 
ratios. 

1. Introduction 

It is well known that the solution of certain class of problems in elasticity and 
acoustics are not satisfactorily carried out by the method of separation of variables. 
An important problem of this class is one which involves a finite cylindrical geometry. 
Although the interior problem has recently been analysed by a powerful method of 
superposition of the modes of the dominant part of b o ~ n d a r y l ' ~ ' ~ ' ~ ,  the corresponding 
exterior problem is not yet fully solved. The difficulty is in finding appropriate cylin- 
drical functions which would be required to satisfy the three dimensional radiation 
condition at infinity. 

Accordingly, alternative methods have been attempted for the exterior problem. 
Williams6 et al. investigated the acoustic radiation from a finite cylinder using a 
solution in the form of Spherical Hankel functions. The boundary of the cylinder was 
treated as one continuous curve in the axial plane and a least-square approximation 
was applied for the minimization of the errors on the boundary. For selected wave 
numbers (ka = 1, 2 and 5; height = 4a, where a is the radius of the cylinder) they 
obtained far-field radiation patterns and compared with the results due to a line 
source as well as due to loading over an infinite cylindrical cavity. 

In this paper, we employ the above technique to the more difficult problem of a 
finite cylindrical cavity in an infinite elastic medium which arises in the contexts of 
explosive working, geophysical prospecting and under-ground explosions. The solution 
obtained here takes into account the special nature of the edges of the cydrical 
cavity. A proof of convergence validating the spherical function expansion of the 



solution pertaining to cylindrical geometries is given separately as the appendix to the 
paper. 

2, Formulation of the Problem 

In the cylindrical system r, 4, z, let the elastic solid occupy the exterior of the cylin- 
drical cavity as shown in Fig. 1. 

I 

r = a ,  I z I  < b ;  I z I = b , r < a w i t h O < $ < 2 n .  

The equations of motion are given by 
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where @ and + statisfy the Helmholtz equations 

and ka = U/U, kp = w/p, = ( A  + 2p)/p, pa = p/p 

where w is the circular frequency in the harmonic factor eiWd. The conditions for the 
normal and shear stresses on the cavity are taken to be 

~ n ,  = pG(0) ekt, (0 < 0 ( X )  (4) 

where R, 8, 4 denote the spherical co-ordinates. In the above equations, it is assumed 
that the surface of the cylindrical cavity is given by the piece-wise continuous curve 
(in the axial plane) 

a a 
0 ( 0 < tan-'- and x - tan-' g < 8 < r )  b 

In addition to Eqn. (4), the radiation condition at infinity must also be satisfied. 
Accordingly, we assume that the solution of Eqn. (3) in terms of outgoing spherical 
wave functions as follows 

where hr' are the spherical Hankel functions of second kind and Pn (cos 0) is the 

Legendre polynomial of order n. an and bn are arbitrary co-efficients, which are to be 
determined. The convergence of sucp solutions for cylindrical boundaries is discussed 
through an example in the Appendix. 

3. Method of Solution by the Least Square Approximation 

The normal and shear stresses due to Eqn. (6) on the cavity are given by 
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where A: (0) are defined as 

hf' (koR) P, (cos 0) 

and 

araz2 + k~ ar 

where 

Since the boundary is treated as one curve, the edges of the cylinder have to be 
specially represented. We have, accordingly, assumed a small circular arc to replace 
the edge concerned so that the values of the normal and shear stresses can be com- 
pounded by the formuIae6, 

on = (or + ~z + 2~rz)  

rnr = 3 (or - ~ z )  (8) 

From the geometrical point of view this representation of the edges is good enough. 
But, to achieve more accurate results, the prescribed boundary conditions should also 
influence the form of this representations. With this observation, the boundary con- 
ditions in Eqn. (4) are effectively satisfied by requiring that the folowing integral is 
minimized 

I = d { 1 F(0) - N(0) [ a + I G(0) - T(0) la) dS(0) 
0 

= IN + IT (say) (9) 

where dS(0) = - 2xa coseca 0d0 on the lateral surface of the cavity (r = a) and 
&(0) =I 2xba tan 0 seca 0d0 on the flat surface (z = & b). The conditions for the 
minimization of the above integral are 
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where n takes all the values as in Eqn. (6). Using the expressions for N(0) and T(0) 
from Eqn. (7), this gives an infinite system of equations for an and bn. The equations 
.are given by 

X + j I; B e an^: (0)A: ( 0 )  + b n ~ p  ( 0 )  A t  (0)) dS(0). 
O n r n  

X - j Z B {an A? (0)A:(B) + bnAr (9) A2 ( 0 ) )  
O n m  

+ j X X {a. A: ( 0 )  ( 0 )  + b. A: ( 0 )  A: (0)) dS(0) 
O n r n  

(11) 

where 

....... m = 0 , 1 , 2  

n = = 0 , 1 , 2  ,...... 

and 2: are the complex conjugates of A: 

In order to make the solution feasible, we truncate this system of equations by 
restricting the range of m, n, (say m, n < N )  which gives a finite set of equations 
for abs and bns. Solving this finite set of equations the stresses and displacements 

in the medium can be found in terms of the various parameters of the problem. The 
discussion of our numerical investigations is given in the next section. 

4. Numerical Results 

Let us choose the loading functions F(0), G(0) in Eqn. (4) as follows 

F(0) = 1 

G(0) = sin (20) (12) 

Since the above loading functions have symmetry about the plane z = 0 we need to 
take only given terms in 0 and odd terms in 4 in the trial solution in Eqn. (6). The 
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computations of the coefficients and the stresses were carried out in the following two 
stages (taking A = p) 

Stage 1 

Here we fixed the value of kpa, taking kpa = 2.0. The coefficients were then 
obtained from Eqn. (1 1) for m, n < 9 and for several values of the aspect ratio (bla). 
Our aim, firstly, was to estimate the minimum values of integral of errors I defined in 
Eqn. (9). To make this estimation more valuable, the two terms in Eqn. (9), which 
represent the errors due to normal stress and shear stress, respectively, were separately 
calculated. These results are given in Table 1 for 0.85 < b/a < I .60. 

Table 1. Values of error integrals for kpa = 2.0 (1 = IN + IT) 

Aspect ratio (bla) Integral of sq. of normal Integral of sq. of shear stress 
stress difference (IN) difference (IT) 

*Indicates optimum value with least error. 

It can be seen from table 1 that the errors are minimum for the case when b/a = 

0.912. We also extended calculations for the values of bla exceeding 1.60 and the 
errors were found to increase continuously. It is seen that the above minimum value 
of bla could be a characteristic aspect ratio for kpa - 2.0. The coefficients a, and bn 
for this case are given in Table 2. These are seen to decrease rapidly. 

Table 2. Expansion coefficients for the finite cylinder with bra = 0.912, kpa = 2.0. 

n Expansion coefficient (a,) n Expansion coefficient (b,)  
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The amplitudes of the stresses on the cavity reproduced by our solution for the 
above case (kea = 2, bla = 0.912) are shown in Fig. 2 and compared with the prescri- 
bed values. The shear stress generally follows the pattern of the prescribed load very 
closely with a slight deviation near the edge of the cavity. The normal stress tends to 
oscillate about the prescribed load. However, the integrated values of the errors 
(IN), is not high. For, this is of the order of 0.127 for normal stresses while the shear 
contribution (IT) is also of the order of 0.129. (The values 0.127 and 0.129 for the 
errors IN & IT are to be interpreted in the sence of 'variances' with error distributions). 
In all these curves the regions of flat and lateral surfaces are separated for the 
sake of clarity. 

Stage 2 

This is similar to stage 1 excepting that we now fix bla and vary kaa. The results 
are given in Table 3 and Fig. 3. 

Table 3. Values of error integrals for b/a = 2.0 (1 = IN + IT)  

Integral of sq. of normal 
stress difference (IN) 

Integral of sq, of shear 
stress difference ( I T )  

('Indicates optimum value with least error). 

Radiation patterns for the displacements are plotted in Figs. 4 and 5 for the above 
cases. 

5. Conclusion 

We have attempted to solve the elasto-dynamic problem of a finite cylindrical cavity 
with the help of spherical Hankel Functions which automatically satisfy the radiation 
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PRESCRIBED STRESS 
- CALCULATED STRESS 

1- NORMAL STRESS 
2-  SHEAR STRESS 

2. Stress amplitude vs 8 (in degrees) on the surface of the cylinder (~spec t  
ratio bla = 0.912, kga = 2.0). 

------- PRESCRIBED STRESS 

- CALCULATED STRESS 
1 - NORMAL STRESS 

Figure 3. Stress amplitude vs 8 (in degrees) on the 
ratio bla = 2.0 & kga = 4.15). 

surface of the cylinder (Aspect 

conditions at infinity. We have also used the least-square approximation for satisfying 
the boundary conditions. In addition, a simple scheme for rounding off the edges of the 
boundary has been adopted. Computation suggests that for any given wave numbers 
(aspect ratios) the solution with least errors can be tracked in the neighbourhood of some 
corresponding aspect ratios (wave numbers). In order to obtain the solution for any 
arbitrary pair of values of both these parameters, the techniques may have to be 
improved in one of the following lines : 

(a) By including more terms in the trial solution; (b) By using spheroidal wave 
functions in place of spherical wave functions; or (c) By using a better scheme, if 
available, both in place of least square method as well as for treating the edges of the 
cavity. 
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Figure 5. Displacement amplitude vs 8 (in degrees) for kpa = 4.15 and b/a 

(R  = 2/rs + za)/a, R, = d ( b 2  + a2)/a). 
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Appendix 

Proof of convergence of the technique 

We establish the convergence of the solutions of the type given in Eqn. (6) with the 
help of a simple example. The essential point will be to prove the convergence right 
upto the surface of the cylindrical cavity. 

Consider the series 

with the boundary condition, say, of the Dirichlet type 

X = X(P,) = a, (2) 
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where Pa is a point on the cylindrical cavity. Let us now solve this problem by 
taking the first (n 4- 1) term of the series (1) and satisfying the condition (2) at (n + 1) 
selected points Po, PI . . ., Pn on the cavity which include the nearest point Pn and the 
fartherst point Po of the cavity from its centre. This gives rise to the following 
equations for determining a,, a,, ...... an 

where 

Hm(Pj) = {h,(kR) P m  (COS 0))~-P, (4) 

The solution of Eqn. (3) is 

. a, = APIA (5) 
where 

while A, can be obtained from the Cramer's rule in the form 

where N,$ = Hz(Pj), i # p and Npj = u j  (for each given p). We observe that A can 
be expanded with its constituent terms of the type. 

where p, q, . .. t take the values from 0 to n and p f q # . . . t. To establish the most 
dominant term here, we note that 

[ P n  (cos 0) 1 < 1, 

~ o ( z )  - ilz, 

( I z I  < < n )  (9) 

Using Eqn. (9) in Eqn. (4), we get 

I HO(Pd I - 11R1 

1.3.5 ... (2n - 1) 
I Hn(Pj) I n >  1, I kRjI < < n .  

kntl Rntl 
(10) 

5 

where Rt is the distance of the point Pj of the cylindrical cavity from its centre. If 
the points Po, Ply P,, ..., P n  are so arranged that the distances R,, R,, R, ... Rn are 
in decreasing order, with R, = (aa + ba)lI2 and Rn = min (a, b) then the most 
dominant term of A in Eqn. (8) works out to be 
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Similarly, in the case of A,, we get 

In obtaining Eqns. (1 1) and (12), we have used the asymptotic approximations in 
Eqns. (9) and (10) assuming I z I < < n for all n. If I z ] < < n only for n ) N where N 
is a fixed integer, then the only change in our subsequent argument will be such that we 
will obtain a modified external factor in place of (x, . x, . x, . . . ~ n )  in Eqns. (17) and 
(18). Using Eqns. (1 1) and (12) in Eqn. (5), one gets I 

Thus from Eqns. (I), (9) and (13), we get 

1.3.5 ... (2p  - I 'P I - { (kR)u+l 1.3.5 ... (2p - 1) 

R;+' 
Cu -- R P + ~  

= x;" (say) (14)- 

where x, = (Rp/R) and xo > x1 > x, ... > Xn. 

Let P be any point at a distance R from the centre of the cavity. P may lie on the 
cavity or anywhere outside it and not necessarily outside the sphere of radius 
(aa + b2)x1a. For any given value of R, we can find a suitable positive integer m such 
that RP < R (i.e. x, < 1) for all p ) m where Rp denotes any point in the set 
(RoRl ... Rn). Note that when R > R,, m = 0 while when R < R,, m will be a 
definite integer which depends on the value of R. 

Now write 

n 2  1 m- 1 n 2  1 
z I % l =  I X P I +  I X P I  

p= 1 p= 1 p=m 
(15). 

where 

n 2  1 n 2  1 
z 1 XP I - B X? from Eqns. (14). 

p=m p=m 

Since xo > x, > x, ... xn-and x: < 1 forp >, m, we have 
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From Eqns. (15) and (18), it follows that the series (1) is absolutely convergent at all 
points P everywhere on and outside the cylindrical cavity. 

This completes the proof of validity of our technique as the extension of the above 
proof to the case of least-square approximation is only formal. 


