SOME RECURRENCE FORMULAE FOR G-FUNCTION OF TWO VARIABLES-II

H. C. Gulati
Government College, Mandsaur (M.P.)

(Received 12 September, 1970)
The object of this paper is to establish more recurrence relations for G-function of two variables. Certain known results for Meijer's G-function have been shown as particular cases.

Some identities and recurrence relations were recently given by the author as particular cases of finite series ${ }^{1}$ by using the derivatives of G-function of two variablés $s^{2,3}$. The symbol (k, δ) represents the set of parameters $k / \delta,(k+1) / \delta, \ldots,(k+\delta-1) / \delta$, where δ is a positive integer and $\left(a_{p}\right)$ stands for $a_{1}, a_{2}, \ldots, a p$ throughout this paper.

The G-function of two variables defined by Agarwal ${ }^{4}$ and Sharma ${ }^{5}$ has been denoted by Bajpaj ${ }^{6}$ as

$$
\begin{aligned}
& \left.\underset{G}{\left(m_{1}, m_{2}\right) ;\left(n_{1}, n_{2}\right), n_{3}} \quad\left[\begin{array}{l}
x \\
\left(p_{1}, p_{2}\right), p_{3} ;\left(q_{1}, q_{2}\right), q_{3}
\end{array}\right] \begin{array}{l}
\left(a_{p_{1}}\right) ;\left(c_{p_{2}}\right) \\
y \\
\left(e_{p_{3}}\right) \\
\left(h_{q}\right) ;\left(d_{q_{2}}\right) \\
\left(f_{q_{3}}\right)
\end{array}\right]=
\end{aligned}
$$

$$
\begin{align*}
& \frac{x^{s} y^{t}}{\underset{j=n_{8}+1}{\prod_{8}} \Gamma\left(e_{j}-s-t\right) \prod_{j=1}^{q_{3}} \Gamma\left(1-f_{j}+s+t\right)} d s d t . \tag{1}
\end{align*}
$$

The contour L_{1} is in the s-plane and runs from - $i \infty$ to $+i \infty$ with loops if necessary, to ensure that the poles of $\Gamma\left(b_{j}-s\right), j=1,2, \ldots, m_{1}$ lic on the right and the poles of $\Gamma\left(1-a_{j}+s\right)$, $j=1,2, \ldots, n_{1}$ and $\Gamma\left(1-e_{j}+s+t\right), j=1,2, \ldots, n_{3}$ to the left of the contour. Similarly the contour L_{2} is in the t-plane and runs from -i $i \infty$ to $+i \infty$ with loops if necessary, to ensure that the poles of $\Gamma\left(d_{j}-t\right) . j=1,2, \ldots, m_{2}$ lie on the right and the poles of $\Gamma\left(1-c_{j}+t\right), j=1,2, \ldots, n_{2}$ and $\Gamma\left(1-e_{j}+s+t\right), j=1,2, \ldots, n_{3}$ on the left of the contour.

Provided that

$$
0<m_{1} \leqslant q_{1}, 0<m_{2} \leqslant q_{2}, 0<n_{1} \leqslant p_{1}, 0<n_{2} \leqslant p_{2}, 0<n_{2} \leqslant p_{3}
$$

the integral converges if
$\left(p_{8}+q_{3}+p_{1}+q_{1}\right)<2\left(m_{1}+n_{1}+n_{3}\right) ;\left(p_{3}+q_{3}+p_{2}+q_{2}\right)<2\left(m_{2}+n_{3}+n_{3}\right)$
$|\arg x|<\left[m_{1}+n_{1}+n_{3}-\frac{1}{2}\left(p_{3}+q_{3}+p_{1}+q_{1}\right)\right] \pi$,
$|\arg y|<\left[m_{2}+n_{2}+n_{3}-\frac{1}{2}\left(p_{3}+q_{3}+p_{2}+q_{2}\right)\right]^{\prime} \pi$.
The right hand side of (1) shall henceforth be denoted by $G\left[\begin{array}{l}x \\ y\end{array}\right]$, whenever there is no chance of misunderstanding, and is the required G function of two variables.

We establish the following identities :
If one value of $a_{h}, h=1,2, \ldots, n_{1}$ is equal to one value of $b_{j}, j=m_{1}+1, \ldots, q_{1}$; one value of $c_{h}, h=1,2, \ldots, n_{2}$ is equal to one value of $d_{j}, j=m_{2}+1, \ldots, q_{2}$ and one value of $e_{h}, h=1,2, \ldots, n_{3}$ is equal to one value of $f_{j}, j=1,2, \ldots, q_{3}$, the G-function of two variables reduces to one of lower order. For example

$$
\begin{align*}
& G\left[\begin{array}{l}
x \\
y
\end{array} \left\lvert\, \begin{array}{l}
\left(a_{p_{1}}\right) ;\left(c_{p_{2}}\right) \\
\left(e_{p_{2}}\right) \\
b_{1}, b_{2}, \ldots, b_{q_{1}-1}, a_{1} ;\left(d_{q_{2}}\right) \\
\left(f_{q}\right)
\end{array}\right.\right]= \\
& =\underset{\left(p_{l}-1, p_{2}\right), p_{3} ;\left(q_{1}-1, q_{2}\right) q_{3}}{\left(m_{1}, m_{2}\right) ;\left(n_{1}-1, n_{2}\right), n_{3}}\left[\begin{array}{l|l}
x & \begin{array}{l}
a_{2}, \ldots, a_{p_{1}} ;\left(c_{p_{2}}\right) \\
\left(e_{p_{3}}\right) \\
h_{1}, \ldots, b_{q_{1}}-1\left(d_{q_{2}}\right) \\
\left(f_{q_{3}}\right)
\end{array}
\end{array}\right] \tag{2}\\
& G\left[\begin{array}{l}
x \\
y \\
y \\
\left.\begin{array}{l}
\left(a_{p_{1}}\right) ;\left(c_{p_{2}}\right) \\
\left(e_{p_{3}}\right) \\
\left(b_{1}\right) ; d_{1}, ., d_{q_{3}-1}, c_{1} \\
\left(f_{q_{3}}\right)
\end{array}\right]=G\left(m_{1}, m_{2}\right) ;\left(n_{1}, n_{2}-1\right), n_{3} \\
\left(p_{1}, p_{2}-1\right), p_{3} ;\left(q_{1}, q_{2}-1\right), q_{3}
\end{array}\left\{\begin{array}{l}
x \\
y
\end{array} \left\lvert\, \begin{array}{l}
\left(a_{p_{1}}\right) ; c_{2}, \ldots, c, \\
\left(e_{3}\right) \\
\left(p_{q_{1}}\right) ; d_{1}, \ldots, d_{q_{2}}-1 \\
\left(f_{q_{3}}\right)
\end{array}\right.\right]\right. \tag{3}\\
& G\left[\begin{array}{l}
x \\
y \\
y \\
\left.\begin{array}{l}
\left(a_{p_{1}}\right) ;\left(c_{p_{2}}\right) \\
\left(e_{p_{3}}\right) ;\left(d_{q_{2}}\right) ;\left(d_{q_{2}}\right) \\
e_{1}, f_{2}, f_{3}, \ldots, . q^{2}
\end{array}\right]=\begin{array}{l}
\left(m_{1}, m_{2}\right) ;\left(n_{1}, n_{2}\right), n_{3}-1 \\
\left(p_{1}, p_{2}\right), p_{3}-1 ;\left(q_{1}, q_{2}\right), q_{3}-1
\end{array}\left[\begin{array}{l}
x \\
y
\end{array} \left\lvert\, \begin{array}{l}
\left(a_{p_{2}}\right) ;\left(c_{p_{3}}\right) \\
e_{2}, \cdots, e_{p_{2}} \\
\left(b_{q_{1}}\right) ;\left(i_{q_{3}}\right) \\
f_{2}, \ldots, f_{q_{3}}
\end{array}\right.\right]
\end{array}\right] \tag{4}
\end{align*}
$$

$$
\begin{align*}
& =G \begin{array}{l}
\left(m_{1}, m_{2}\right) ;\left(n_{1}-1, n_{2}-1\right), n_{3}-1 \\
\left(p_{1}-1, p_{2}-1\right), p_{3}-1 ;\left(q_{1}-1, q_{2}-1\right), q_{3}-1
\end{array}\left\{\begin{array}{l}
x
\end{array} \begin{array}{l}
a_{2}, \ldots, a_{p_{1}}, c_{2}, \ldots, c_{p_{3}} \\
y \\
\begin{array}{l}
e_{2}, \ldots, e_{p_{3}}, \ldots, b_{q_{1}}-1 ; d_{1}, . ., d_{q_{2}}-1 \\
h_{1}, \ldots \\
f_{2}, \ldots, f_{q_{3}}
\end{array}
\end{array}\right] \tag{5}
\end{align*}
$$

Also, if one value of $a_{h}, h=n_{1}+1, \ldots, p_{1}$ is equal to one value of $b_{j}, j=1,2, \ldots, m_{1}$; one value of $c_{h}, h=n_{2}+1, \ldots, p_{2}$ is equal to one value of $d_{j}, j=1,2, \ldots, m_{2}$, then the G-function of two variables reduces to one of a lower order. For example

$G\left[\begin{array}{l}x \\ y \\ \left.y \begin{array}{l}a_{1}, \ldots . a_{p_{1}-1}, b_{1} ; c_{1}, \ldots, c_{p_{2}-1}, d_{1} \\ \left(e_{p_{1}}\right) \\ \left(b_{q_{1}}\right) \\ \left(f_{q_{0}}\right)\end{array}\right)\left(d_{q_{2}}\right)\end{array}\right]=$
$=\stackrel{\left(m_{1}-1, m_{2}-1\right) ;\left(n_{1}, n_{2}\right), n_{3}}{G} \quad\left(p_{1}-1, p_{2}-1\right), p_{3} ;\left(q_{1}-1, q_{2}-1\right), q_{3}\left\{\begin{array}{l}\left.x \left\lvert\, \begin{array}{l}a_{1}, \ldots, a_{p_{1}}-1 ; c_{1}, \ldots, c_{p_{8}-1} \\ y \\ \begin{array}{l}\left(e_{p_{2}}\right) \\ b_{2} \\ \left(f_{q_{3}}\right)\end{array}, \ldots, b_{q_{1}} ; d_{2}, \ldots, d_{q_{3}}\end{array}\right.\right]\end{array}\right\}$
The proofs of the above-mentioned identities are very simple and are therefore omitted.
$G\left[\begin{array}{l}x \\ y\end{array}\right]=(2 \pi)^{w} k \begin{gathered}\left(m_{1} k, m_{2} k\right) ;\left(n_{1} k, n_{2} k\right), n_{2} k \\ \left(k p_{1}, k p_{2}\right), k p_{3} ;\left(k q_{1}, k q_{2}\right), k q_{3}\end{gathered}\left\{\left.\begin{array}{c}\frac{x^{k}}{\left.(k)^{k\left(q_{1}+q_{3}-p_{1}-p_{3}\right.}\right)} \\ (k)^{k\left(q_{3}+g_{3}-p_{3}-p_{3}\right)}\end{array} \right\rvert\,\right.$

$$
\left[\begin{array}{l}
\Delta\left(k, a_{1}\right), \ldots, \Delta\left(k, a_{p_{1}}\right) ; \Delta\left(k, c_{1}\right), \ldots, \Delta\left(k, c_{p_{2}}\right) \tag{9}\\
\Delta\left(k, e_{1}\right), \ldots, \Delta\left(k, e_{p_{2}}\right) \\
\Delta\left(k, b_{1}\right), \ldots, \Delta\left(k, b_{q_{1}}\right) ; \Delta\left(k, d_{1}\right), \ldots, \Delta\left(k, d_{q_{3}}\right) \\
\Delta\left(k, f_{1}\right), \ldots, \Delta\left(k, f_{q_{3}}\right)
\end{array}\right]
$$

where
$u=(k-1)\left[\frac{1}{2}\left(p_{1}+q_{1}+p_{2}+q_{2}+p_{3}+q_{3}\right)-\left(m_{1}+n_{1}+m_{2}+n_{2}+n_{3}\right)\right]$
$v=\sum_{j=1}^{q_{1}} b_{j} \sum_{j=1}^{p_{1}} a_{j}+\sum_{j=1}^{q_{2}} d_{j}-\sum_{j=1}^{p_{2}} c_{j}+\sum_{j=1}^{q_{3}} f_{j}-\sum_{j=1}^{p_{\mathrm{a}}} e_{j}+\frac{1}{2}\left(p_{1}+p_{2}+p_{3}-q_{1}-q_{2}-q_{3}\right)+2$
Proof
To prove (9), expressing G-function on the left hand side as (1) and replacing s by $k s$ and $t \mathrm{by} k t$, we get

.$\frac{\prod_{j=1}^{n} \Gamma\left(1-e_{j}+k s+k t\right) x^{k s} y^{k t}}{\substack{\boldsymbol{p}_{s}} \Gamma\left(e_{j}-k s-k t\right) \prod_{\substack{s \\ j=1}}^{q_{3}+1} \Gamma\left(1-f_{j}+k s+k t\right)} d s d t$.
${ }^{*}$ Now using multiplication formula for Gamma function [7, p, 11, (1)] and (1), the formula (9) is established.

$$
\begin{align*}
& G\left[\begin{array}{l}
x \\
y
\end{array}\right]=\frac{1}{2 \pi i}\left\{\begin{array}{lc|l}
& \left(m_{1}+1, m_{2}\right) ;\left(n_{1}, n_{2}\right), n_{3} \\
\left(\pi b_{m_{1+1}}\right. & G\left(p_{1}, p_{2}\right), p_{3} ;\left(q_{1}, q_{2}\right), q_{3}
\end{array}\left\{\begin{array}{l}
x e^{-i \pi} \\
y
\end{array} \begin{array}{l}
\left(a_{p_{1}}\right) ;\left(c_{p_{2}}\right) \\
\left(e_{p_{3}}\right) ;\left(d_{q_{2}}\right) \\
\left(b_{q_{2}}\right) \\
\left(f_{\left.q_{3}\right)}\right)
\end{array}\right]-\right. \\
& \left.-(e)^{-i \pi b_{m_{1+1}}} \underset{G_{1}^{\left(m_{1}+1, m_{2}\right) ;\left(n_{1}, n_{2}\right), n_{3}}}{\left(p_{1}\right), p_{3} ;\left(q_{1}, q_{2}\right), q_{3}} \quad\left[\begin{array}{l|l}
x e^{i \pi} & \begin{array}{l}
\left(a_{p_{1}}\right) ;\left(c_{r_{2}}\right) \\
\left(e_{p_{3}}\right) \\
\left(q_{1_{2}}\right) ;\left(d_{q_{2}}\right) \\
\left(f_{q_{3}}\right)
\end{array}
\end{array}\right]\right\} \tag{10}
\end{align*}
$$

$$
\begin{aligned}
& \left.-\quad(e)^{-i \pi d m_{2+1}} \quad G^{\left(m_{1}, m_{2}+1\right) ;\left(n_{1}, n_{2}\right), n_{3}}\left[\begin{array}{l|l}
x & \left.\begin{array}{l}
\left(a_{p_{1}}\right) ;\left(c_{p_{3}}\right) \\
\left(e_{p_{3}}\right) \\
\left(b_{q_{1}}\right) ;\left(p_{2}\right), p_{3} ;
\end{array}\right] \\
\left(f_{q_{3}}\right)
\end{array}\right]\right\}
\end{aligned}
$$

$$
\begin{aligned}
& -(e)^{-i \pi n_{1}+1} \quad \begin{array}{cc|l}
\left(m_{1}, m_{2}\right) ;\left(n_{1}+1, n_{2}\right), n_{3} \\
& \left(p_{1}, p_{2}\right), p_{3} ;\left(q_{1}, q_{2}\right), q_{3}
\end{array}\left[\begin{array}{l|l}
x e^{i \pi} & \left.\begin{array}{l}
\left(a_{p_{1}}\right) ;\left(c_{p_{2}}\right) \\
\left(e_{p_{3}}\right) \\
\left(b_{1}\right) ;\left(d_{q_{2}}\right) \\
\left(f_{q_{3}}\right)
\end{array}\right]
\end{array}\right] \frac{1}{c}(12)
\end{aligned}
$$

$$
\begin{align*}
& \left.-(e)^{-i \pi e} n_{3}+1 \quad \begin{array}{ll}
\left.G_{1}, m_{2}\right) ;\left(n_{1}, n_{2}\right), n_{3}+1 \\
\left(p_{1}, p_{2}\right), p_{3} ;\left(q_{1}, q_{2}\right), q_{3}
\end{array}\left\{\begin{array}{l}
x e^{i \pi} \\
y e^{i \pi}
\end{array} \begin{array}{l}
\left(\begin{array}{l}
\left(a_{p_{1}}\right) ;\left(c_{p_{3}}\right) \\
\left(e_{p_{3}}\right) \\
\left(b_{q_{2}}\right) ;\left(d_{q_{2}}\right) \\
\left(f_{q_{3}}\right)
\end{array}\right.
\end{array}\right]\right\} \tag{14}
\end{align*}
$$

Proof

To prove (10), expressing the G-function on the left hand side as (1) and multiplying the numerator and denominator by $\Gamma\left(b_{m_{1}+1}-s\right)$, we get,

$x^{s} y^{t}$
$d s d t$. (15)

$$
\prod_{j=n_{3}+1}^{p_{3}} \Gamma\left(e_{j}-s-t\right) \prod_{j=1}^{q_{3}} \Gamma\left(1-f_{j}+s+t\right) \quad \Gamma\left(b_{m_{1}+1}-s\right) \Gamma\left(1-b_{m_{1}+1}+s\right)
$$

Now by virtue of the relation

$$
\Gamma_{z} \Gamma(1-z)=\frac{\pi}{\sin \pi z}=\frac{2 \pi i}{e^{i \pi z}-e^{-i \pi z}}
$$

we see that

$$
\begin{equation*}
\Gamma\left(b_{m_{1}+1}-s\right) \quad \Gamma\left(1-b_{m_{1}+1}+s\right)=\frac{2 \pi i}{(e)^{i \pi}\left(\frac{b_{m_{1}+1}-s}{}\right)-(e)^{-i \pi}\left(b_{m_{1}+1^{-s}}\right)} \tag{16}
\end{equation*}
$$

The relation (10) is proved by using (15), (16) and (1).
By adopting the same procedure as for (10), the formulae (11)-(14) are proved.

$$
\left[\begin{array}{l}
x \\
y \\
y\left(\begin{array}{l}
a,\left(a_{p_{1}}\right) \\
\left(e_{p_{3}}\right) \\
a,\left(b_{q_{1}}\right) ; c,\left(d_{q_{2}}\right) \\
\left(f_{q_{3}}\right)
\end{array}\right.
\end{array}\right]=\left(-1,(-1)\left(c_{p_{2}}\right)\left[\begin{array}{l}
x \\
y
\end{array}\right](17)\right.
$$

where $a_{n_{1}}=a+r, \epsilon_{n_{2}}=c+k, r$ and k are integers.

$$
\begin{align*}
& =(-1)(-1) G^{r}\left(m_{1}+1, m_{2}+1\right) ;\left(n_{1}, n_{2}\right), n_{3} \\
& \left(p_{1}+1, p_{2}+1\right), p_{3} ;\left(q_{1}+1, q_{2}+1\right), q_{3} \\
& {\left[\begin{array}{l}
x \\
y \\
\begin{array}{l}
\left(a_{p_{1}}\right), a ;\left(c_{p_{2}}\right) c \\
\left(e_{r}\right) \\
b,\left(b_{q_{1}}\right) ; \boldsymbol{a},\left(d_{q_{2}}\right) \\
\left(f_{q_{3}}\right)
\end{array}
\end{array}\right]} \tag{18}
\end{align*}
$$

where $a-b=r, a-d=k, r$ and k are integers or zero.
(17) and (18) are proved by using (1) and Rainville ${ }^{8}$
$x^{n} \frac{\partial^{n}}{\partial x^{n}} G\left[\begin{array}{l}x \\ y\end{array}\right]=\underset{\left(p_{1}+1, p_{2}\right), p_{3} ;\left(q_{1}+1, \eta_{2}\right), q_{3}}{\left(m_{1}, m_{2}\right) ;\left(n_{1}+1, n_{2}\right), n_{3}}\left[\begin{array}{l}x\end{array}\left[\begin{array}{l}0,\left(a_{p_{1}}\right) ;\left(a_{p_{2}}\right) \\ y \\ \left(e_{p_{3}}\right), n ;\left(a_{q_{2}}\right) \\ \left(b_{q_{1}}\right) \\ \left(f q_{3}\right)\end{array}\right]\right.$
M/S31Army-5

A similar result is true for

$$
\begin{gather*}
y^{n} \frac{\partial^{n}}{\partial y^{n}} G\left[\begin{array}{l}
x \\
y
\end{array}\right] \\
x^{n} \frac{n}{\partial x^{n}} G\left[\begin{array}{l}
x^{-1} \\
y
\end{array}\right]=(-)^{n} \begin{array}{c}
\left(m_{1}, m_{2}\right) ;\left(n_{1}+1, n_{2}\right), n_{3} \\
\left(p_{1}+1, p_{2}\right), p_{3} ;\left(q_{1}+1, q_{2}\right), q_{3}
\end{array}\left[\begin{array}{l}
\left.x^{-1} \left\lvert\, \begin{array}{l}
1-n,\left(a_{p_{1}}\right) ;\left(c_{p_{3}}\right) \\
y\left[\begin{array}{l}
\left(e_{p_{2}}\right) \\
\left(b_{q_{1}}\right), 1 ;\left(d_{q_{2}}\right) \\
\left(f_{q_{3}}\right)
\end{array}\right.
\end{array}\right.\right]
\end{array}\right] \tag{20}
\end{gather*}
$$

A similar result holds for

$$
y^{n} \frac{\partial^{n}}{\partial y^{n}} G\left[\begin{array}{c}
x \\
y^{-1}
\end{array}\right]
$$

The proofs for (19) and (20) are very simple and follow by expressing the G-function on the left hand side as in (1), changing the order of integration and differentiation and again using (1).

Particular cases:-Putting $m_{2}=q_{2}=1, n_{2}=n_{3}=p_{2}=p_{3}=q_{3}=0$ and making use of the formula given by Bajpaie viz.

$$
\underset{(p, 0), 0 ;(q, 1), 0}{(\dot{m}, 1) ;(n, 0), 0}\left[\begin{array}{l}
x \\
y
\end{array} \left\lvert\, \begin{array}{l}
\left(a_{p}\right) ; \cdots \\
\left(b_{q}\right) ; 0
\end{array}\right.\right]=e^{-y} m_{G} n\binom{\left(a_{p}\right)}{p, q}
$$

we get the known results ${ }^{6}$ from (2), (6), (10), (12), (19) and (20).

ACKNOWLEDGEMENT

I wish to express my sincere thanks to Dr. S. D. Bajpai of Regional Engineering College, Kurukshetra for his guidance in the preparation of this paper.

REFERENCES

1. Gulati, H. C., Finite series for G-function of two variables (Communicated for publieation).
2. Gulati, H. C., Def Sci J, Vol 21, No 2 (1971), 101-106.
3. Gulati, H. C., Derivatives of G-function of two variables (Cummunicated for publication).
4. Agarwal, R. P., An extension to Meijer's G-function. Proc. Nat. Inst. Sci. India, 31, A, r(1965), 536-546.
5. Sharma, B. L., On the generalised functions of two variables. Ann. Soc. Sci. Bruxelles Ser 1, 79-1 (1965), p. 26-40.
6. Bajpai, S. D., Some results intolving G-function of two variables (Communicated for pablication).
7. Luke, Y. L., "The Special Functions and their Approximations, Vol. I"" (Academic Press, New York \& London) 1969, pp. 149-152.
8. Rainvilite, E. D., "Special Functions" (Macmillan Co, New York), 1965, p 32, eq 9.
