SOME RECURRENCE FORMULAE FOR G-FUNCTION OF TWO VARIABLES-II

H. C. GULATI

Government College, Mandsaur (M.P.)

(Received 12 September, 1970)

The object of this paper is to establish more recurrence relations for G-function of two variables. Certain known results for Meijer's G-function have been shown as particular cases.

Some identities and recurrence relations were recently given by the author as particular cases of finite series¹ by using the derivatives of G-function of two variables^{2,3}. The symbol (k, δ) represents the set of parameters k/δ , $(k+1)/\delta$, ..., $(k+\delta-1)/\delta$, where δ is a positive integer and (a_p) stands for a_1, a_2, \ldots, ap throughout this paper.

The G-function of two variables defined by Agarwal⁴ and Sharma⁵ has been denoted by Bajpai⁶ as

$$j=n_a+1$$
 $j=1$

The contour L_1 is in the s-plane and runs from $-i\infty$ to $+i\infty$ with loops if necessary, to ensure that the poles of $\Gamma(b_j - s)$, $j = 1, 2, \ldots, m_1$ lie on the right and the poles of $\Gamma(1 - a_j + s)$, $j = 1, 2, \ldots, n_1$ and $\Gamma(1 - e_j + s + t)$, $j = 1, 2, \ldots, n_3$ to the left of the contour. Similarly the contour L_2 is in the t-plane and runs from $-i\infty$ to $+i\infty$ with loops if necessary, to ensure that the poles of $\Gamma(d_j - t)$, $j = 1, 2, \ldots, m_2$ lie on the right and the poles of $\Gamma(1 - e_j + s + t)$, $j = 1, 2, \ldots, m_2$ not the right of the contour.

Provided that

$$0 < m_1 \leqslant q_1, \ 0 < m_2 \leqslant q_2, \ 0 < n_1 \leqslant p_1, \ 0 \leqslant n_9 \leqslant p_2, \ 0 \leqslant n_2 \leqslant p_3;$$

235

the integral converges if

$$\begin{split} &(p_3+q_3+p_1+q_1)<2\;(m_1+n_1+n_3);\;(p_3+q_3+p_2+q_2)<2\;(m_2+n_3+n_3);\\ &|\arg\;x|<[m_1+n_1+n_3-\frac{1}{2}\;(p_3+q_3+p_1+q_1)]\;\pi,\\ &|\arg\;y|<[m_2+n_2+n_3-\frac{1}{2}\;(p_3+q_3+p_2+q_2)]\;\pi. \end{split}$$

The right hand side of (1) shall henceforth be denoted by $G\begin{bmatrix} x\\ y\end{bmatrix}$, whenever there is no chance of misunderstanding, and is the required G function of two variables.

We establish the following identities :

If one value of a_h , $h=1, 2, \ldots, n_1$ is equal to one value of b_j , $j=m_1+1, \ldots, q_1$; one value of c_h , $h=1, 2, \ldots, n_2$ is equal to one value of d_j , $j=m_2+1, \ldots, q_2$ and one value of e_h , $h=1, 2, \ldots, n_3$ is equal to one value of f_j , $j=1, 2, \ldots, q_3$, the *G*-function of two variables reduces to one of lower order. For example

$$G \begin{bmatrix} x \\ y \\ (a_{p_{1}}); (c_{p_{2}}) \\ (b_{q_{1}}) \\ (f_{q}) \end{bmatrix} = \begin{pmatrix} (m_{1}, m_{2}); (n_{1}-1, n_{2}), n_{3} \\ (p_{1}-1, p_{2}), p_{3}; (q_{1}-1, q_{2}) q_{3} \end{bmatrix} \begin{bmatrix} x \\ y \\ (e_{p_{3}}) \\ (b_{1}, \vdots, d_{1}, \ldots, d_{q_{3}}-1, c_{1} \\ (f_{q_{3}}) \end{bmatrix} = \begin{pmatrix} (m_{1}, m_{2}); (n_{1}, n_{2}-1), n_{3} \\ (p_{1}, p_{2}-1), p_{3}; (q_{1}, q_{2}-1), q_{3} \end{bmatrix} \begin{bmatrix} x \\ (a_{p_{1}}); (c_{p_{2}}) \\ (b_{q_{1}}); (d_{1}, \ldots, d_{q_{3}}-1, c_{1} \\ (f_{q_{3}}) \end{bmatrix} = \begin{pmatrix} (m_{1}, m_{2}); (n_{1}, n_{2}-1), n_{3} \\ (p_{1}, p_{2}-1), p_{3}; (q_{1}, q_{2}-1), q_{3} \end{bmatrix} \begin{bmatrix} x \\ (a_{p_{2}}); (c_{p_{3}}) \\ (b_{q_{1}}); (d_{q_{2}}) \\ (b_{q_{1}}); (d_{q_{1}}) \\ (b_{q_{1}}); (d_{q_{1}}) \\ (b_{q_{1}}); (d_{q_{1}}) \\ ($$

$$G\begin{bmatrix} x & \begin{pmatrix} a_{p_{1}}, & \langle b_{p_{2}} \rangle \\ (e_{p_{3}}) \\ b_{1}, \dots, & b_{q_{1}} - 1, & a_{1}; & d_{1}, \dots, & d_{q_{3}} - 1, & c_{1} \end{bmatrix} = \\ = G\begin{pmatrix} (m_{1}, & m_{2}); & (n_{1} - 1, & n_{2} - 1), & n_{3} - 1 \\ (p_{1} - 1, & p_{2} - 1), & p_{3} - 1; & (q_{1} - 1, & q_{2} - 1), & q_{3} - 1 \end{bmatrix} \begin{bmatrix} x & a_{2}, \dots, & a_{p_{1}}; & c_{2}, \dots, & c_{p_{3}} \\ e_{2}, & \dots, & e_{p_{3}} \\ b_{1}, & \dots, & b_{q_{1}} - 1; & d_{1}, \dots, & d_{q_{3}} - 1 \\ f_{2}, & \dots, & f_{q_{3}} \end{bmatrix}$$
(5)

Also, if one value of a_h , $h=n_1+1, \ldots, p_1$ is equal to one value of b_j , $j=1, 2, \ldots, m_1$; one value of c_h , $h=n_2+1, \ldots, p_2$ is equal to one value of d_j , $j=1, 2, \ldots, m_2$, then the G-function of two variables reduces to one of a lower order. For example GULATI : G-Function of Two Variables

$$\begin{aligned}
G \begin{bmatrix} x \\ y \\ \begin{pmatrix} a_{1}, \dots, a_{p_{1}-1}, b_{1}; (c_{p_{s}}) \\ (b_{q_{1}}); (d_{q_{s}}) \\ (f_{q_{s}}) \end{pmatrix} &= G \\
= G \\
(p_{1}-1, p_{2}), p_{3}; (q_{1}-1, q_{2}), q_{s} \\
\begin{bmatrix} x \\ y \\ (c_{p_{s}}) \\ (f_{q_{s}}) \\ (b_{q_{1}}); (d_{q_{s}}) \\ (f_{q_{s}}) \end{bmatrix} &= (m_{1}, m_{2}-1); (n_{1}, n_{2}), n_{3} \\
= G \\
\begin{bmatrix} x \\ y \\ (c_{p_{s}}) \\ (f_{q_{s}}) \\ (f_{q_{s}}) \end{bmatrix} \\
= G \\
= G \\
\begin{bmatrix} x \\ y \\ (c_{p_{s}}) \\ (f_{q_{s}}) \\ (f_{q_{s}}) \end{bmatrix} \\
= G \\
=$$

$$(p_1-1, p_2-1), p_3; (q_1-1, q_2-1), q_3 [(f_{q_3})]$$

The proofs of the above-mentioned identities are very simple and are therefore omitted.

$$G\begin{bmatrix} x\\ y \end{bmatrix} = (2\pi)^{u} k^{v} G \begin{pmatrix} (m_{1} k, m_{2} k); (n_{1} k, n_{2} k), n_{3} k\\ (kp_{1}, kp_{2}), kp_{3}; (kq_{1}, kq_{2}), kq_{3} \end{pmatrix} \begin{pmatrix} \frac{x^{k}}{(k)^{k(q_{1}+q_{3}-p_{1}-p_{3})}} \\ \frac{y^{k}}{(k)^{k(q_{1}+q_{3}-p_{3}-p_{3})}} \\ \begin{pmatrix} \Delta(k, a_{1}), \dots, \Delta(k, a_{p_{1}}) ; \Delta(k, c_{1}), \dots, \Delta(k, c_{p_{3}})\\ \Delta(k, e_{1}), \dots, \Delta(k, e_{p_{3}}) \\ \Delta(k, b_{1}), \dots, \Delta(k, b_{q_{1}}) ; \Delta(k, d_{1}), \dots, \Delta(k, d_{q_{3}}) \\ \end{pmatrix}$$
(9)

where

$$u = (k-1) \left[\frac{1}{2} \left(p_1 + q_1 + p_2 + q_2 + p_3 + q_3 \right) - (m_1 + n_1 + m_2 + n_2 + n_3) \right]$$

$$v = \sum_{j=1}^{q_1} b_j - \sum_{j=1}^{p_1} a_j + \sum_{j=1}^{q_2} d_j - \sum_{j=1}^{p_2} c_j + \sum_{j=1}^{q_3} f_j - \sum_{j=1}^{p_3} e_j + \frac{1}{2} \left(p_1 + p_2 + p_3 - q_1 - q_2 - q_3 \right) + 2$$

$$D_{max} f_{j}$$

Proof

To prove (9), expressing G-function on the left hand side as (1) and replacing s by ks and t by kt, we get

$$k^{2} \quad \frac{1}{(2\pi i)^{2}} \int_{L_{1}} \int_{L_{2}} \int_{j=m_{1}+1}^{\frac{m_{1}}{\prod}} \frac{\Gamma(b_{j}-ks) \prod_{j=1}^{n_{1}} \Gamma(1-a_{j}+ks) \prod_{j=1}^{m_{2}} \Gamma(d_{j}-kt) \prod_{j=1}^{n_{2}} \frac{\Gamma(1-c_{j}+kt)}{\prod_{j=1}^{q_{1}} \prod_{j=m_{2}+1}^{p_{2}} \Gamma(1-d_{j}+kt) \prod_{j=n_{2}+1}^{p_{2}} \Gamma(c_{j}-kt)}$$

237

Now using multiplication formula for Gamma function [7, p. 11, (1)] and (1), the formula (9) is established.

$$\begin{split} & G\left[\begin{array}{c} x\\ y\end{array}\right] = \frac{1}{2\pi i} \left\{ (e)^{i\pi e_{m_{1}+1}} & G_{(p_{1},p_{2}),p_{3}}^{(m_{1}+1,m_{2});(n_{1},n_{2}),n_{3}} \left[\begin{array}{c} xe^{-i\pi}\\ y\end{array}\right] \left[\begin{array}{c} (e_{p_{1}});(c_{p_{1}})\\ (e_{p_{1}});(d_{q_{1}})\\ (f_{q_{1}}) \end{array}\right] - \\ & -(e)^{-i\pi b} m_{1+1} & G_{(p_{1},p_{2}),p_{3}}^{(m_{1}+1,m_{2});(n_{1},n_{2}),n_{3}} \\ & G\left[\begin{array}{c} x\\ y\end{array}\right] = \frac{1}{2\pi i} \left\{ (e)^{i\pi d} m_{2+1} & G_{(p_{1},p_{2}),p_{3};(q_{1},q_{2}),q_{3}}^{(m_{1},m_{2}+1);(n_{1},n_{2}),n_{3}} \\ & G\left[\begin{array}{c} x\\ y\end{array}\right] = \frac{1}{2\pi i} \left\{ (e)^{i\pi d} m_{2+1} & G_{(p_{1},p_{2}),p_{3};(q_{1},q_{2}),q_{3}}^{(m_{1},m_{2}+1);(n_{1},n_{2}),n_{3}} \\ & G\left[\begin{array}{c} x\\ y\end{array}\right] = \frac{1}{2\pi i} \left\{ (e)^{i\pi d} m_{2+1} & G_{(p_{1},p_{2}),p_{3};(q_{1},q_{2}),q_{3}}^{(m_{1},m_{2}+1);(n_{1},n_{3}),n_{3}} \\ & ge^{i\pi} \\ & \left[\begin{array}{c} (e_{p_{1}});(c_{p_{1}})\\ (b_{q_{1}});(d_{q_{1}})\\ (f_{q_{3}}) \end{array}\right] \right\} \right\} (11) \\ & G\left[\begin{array}{c} x\\ y\end{array}\right] = \frac{1}{2\pi i} \left\{ (e)^{i\pi a} n_{1+1} & G_{(p_{1},p_{2}),p_{3};(q_{1},q_{2}),q_{3}}^{(m_{1},m_{2}+1),n_{3}} \\ & G\left[\begin{array}{c} x\\ y\end{array}\right] = \frac{1}{2\pi i} \left\{ (e)^{i\pi a} n_{2+1} & G_{(p_{1},p_{2}),p_{3};(q_{1},q_{2}),q_{3}}^{(m_{1},m_{2}+1),n_{3}} \\ & ge^{i\pi} \\ & \left[\begin{array}{c} (a_{p_{1}});(c_{p_{1}})\\ (b_{q_{1}});(d_{q_{1}})\\ (f_{q_{1}})\end{array}\right] \right\} \right\} (12) \\ & G\left[\begin{array}{c} x\\ y\end{array}\right] = \frac{1}{2\pi i} \left\{ (e)^{i\pi e} n_{2+1} & G_{(p_{1},p_{2}),p_{3};(q_{1},q_{2}),q_{3}}^{(m_{1},m_{2}+1),n_{3}} \\ & ge^{i\pi} \\ & \left[\begin{array}{c} (a_{p_{1}});(c_{p_{1}})\\ (b_{q_{1}});(d_{q_{1}})\\ (f_{q_{1}})\end{array}\right] \right\} \right\} (12) \\ & G\left[\begin{array}{c} x\\ y\end{array}\right] = \frac{1}{2\pi i} \left\{ (e)^{i\pi e} n_{2+1} & G_{(p_{1},p_{2}),p_{3};(q_{1},q_{2}),q_{3}}^{(m_{1},m_{2}+1),n_{3}} \\ & ge^{i\pi} \\ & \left[\begin{array}{c} (a_{p_{1}});(c_{p_{1}})\\ (b_{q_{1}});(d_{q_{1}})\\ (f_{q_{1}})\end{array}\right] \right\} \right\} (13) \\ & G\left[\begin{array}{c} x\\ y\end{array}\right] = \frac{1}{2\pi i} \left\{ (e)^{i\pi e} n_{3+1} & G_{(p_{1},p_{2}),p_{3};(q_{1},q_{2}),q_{3}}^{(m_{1},m_{2});(n_{1},n_{2}),n_{3}+1} \\ & \left[\begin{array}{c} xe^{-i\pi} \\ (b_{q_{1}});(d_{q_{1}})\\ (f_{q_{1}})\end{array}\right] \right\} (14) \\ & - (e)^{-i\pi e} n_{3+1} & G_{(p_{1},p_{2}),p_{3};(q_{1},q_{2}),q_{3}}^{(m_{1},m_{2});(n_{1},n_{2}),n_{3}+1} \\ & \left[\begin{array}{c} xe^{i\pi} \\ (b_{q_{1}});(b_{q_{1}});(b_{q_{1}})\\ (f_{q_{1}});(d_{q_{1}})\end{array}\right] \right\} (14) \\ & - (e)^{$$

Proof

To prove (10), expressing the G-function on the left hand side as (1) and multiplying the numerator and denominator by $\Gamma(b_{m_1+1}-s)$, we get,

$$\frac{1}{(2\pi i)^2} \int_{L_1} \int_{L_2} \frac{\prod_{j=1}^{m_1+1} \Gamma(b_j-s) \prod_{j=1}^{n_1} \Gamma(1-a_j+s) \prod_{j=1}^{m_2} \Gamma(d_j-t) \prod_{j=1}^{n_2} \Gamma(1-c_j+t) \prod_{j=1}^{n_3} \Gamma(1-e_j+s+t)}{\prod_{j=1}^{q_1} \Gamma(1-b_j+s) \prod_{j=n_1+1}^{p_1} \Gamma(a_j-s) \prod_{j=n_2+1}^{q_2} \Gamma(1-d_j+t) \prod_{j=n_2+1}^{p_2} \Gamma(c_j-t)} \sum_{j=n_2+1}^{n_3} \Gamma(a_j-s) \prod_{j=n_2+1}^{q_2} \Gamma(1-d_j+t) \prod_{j=n_2+1}^{n_3} \Gamma(a_j-s) \prod_{j=n_2+1}^{q_2} \Gamma(1-d_j+t) \prod_{j=n_2+1}^{n_3} \Gamma(a_j-s) \prod_{j=n_2+1}^{q_2} \Gamma(a_j-s) \prod_{j=n_2+1}^{n_3} \Gamma(a_j-s) \prod_{j=n_2+1}^{n_3}$$

$$\frac{x^{s} y^{t}}{\prod_{a=n_{3}+1}^{p_{3}} \Gamma(e_{j} - s - t) \prod_{j=1}^{q_{3}} \Gamma(1 - f_{j} + s + t) \Gamma(b_{m_{1}+1} - s) \Gamma(1 - b_{m_{1}+1} + s)} ds dt. (15)$$

Now by virtue of the relation

$$\Gamma_z \ \Gamma(1-z) = \frac{\pi}{\sin \pi z} = \frac{2\pi i}{e^{i\pi z} - e^{-i\pi z}}$$

we see that

$$\Gamma(b_{m_{1}+1}-s) \quad \Gamma(1-b_{m_{1}+1}+s) = \frac{2\pi i}{(e)^{i\pi}(b_{m_{1}+1}-s)-(e)^{-i\pi}(b_{m_{1}+1}-s)}$$
(16)

The relation (10) is proved by using (15), (16) and (1).

By adopting the same procedure as for (10), the formulae (11)-(14) are proved.

$$G_{(p_{1}+1, p_{2}+1); (n_{1}, n_{2}), n_{3}}^{(m_{1}+1, m_{2}+1); (n_{1}, n_{2}), n_{3}} \left[\begin{array}{c} x \\ y \\ (e_{p_{1}}) \\ a_{1} \\ (b_{q_{1}}); c_{1} \\ (d_{q_{2}}) \end{array} \right] = (-1/(-1)G_{y}^{(x)} \left[\begin{array}{c} x \\ y \\ y \\ (f_{q_{3}}) \end{array} \right]$$
(17)

where $a_{n_1} = a + r$, $c_{n_2} = c + k$, r and k are integers.

$$\left[\begin{array}{c} (m_1, m_2); (n_1 + 1, n_2 + 1), n_3 \\ (p_1 + 1, p_2 + 1), p_3; (q_1 + 1, q_2 + 1), q_3 \end{array} \left[\begin{array}{c} x \\ y \\ (e_{p_3}) \\ (b_1), b; (d_{q_3}), d \\ (f_{q_3}) \end{array} \right] \right]$$

$$=(-1)^{k} \begin{pmatrix} (m_{1}+1, m_{2}+1); (n_{1}, n_{2}), n_{3} \\ (p_{1}+1, p_{2}+1), p_{3}; (q_{1}+1, q_{2}+1), q_{3} \end{pmatrix} \begin{bmatrix} x & (a_{p_{1}}), a; (c_{p_{2}}) & c_{p_{3}} \\ (e_{p_{3}}) & b_{p_{3}} & b_{p_{3}} \\ (f_{q_{3}}) & (f_{q_{3}}) & f_{p_{3}} \end{bmatrix}$$
(18)

where a - b = r, c - d = k, r and k are integers or zero. (17) and (18) are proved by using (1) and Rainville⁸

$$x^{n} \frac{\Im^{n}}{\partial x^{n}} G \begin{bmatrix} x \\ y \end{bmatrix} = \begin{matrix} (m_{1}, m_{2}); (n_{1} + 1, n_{2}), n_{3} \\ = G \\ (p_{1} + 1, p_{2}), p_{3}; (q_{1} + 1, q_{2}), q_{3} \end{matrix} \begin{bmatrix} x & 0, (a_{p_{1}}); (a_{p_{2}}) \\ y & (e_{p_{3}}) \\ (b_{q_{1}}), n; (d_{q_{2}}) \\ (f_{q_{3}}) \end{matrix} \end{bmatrix}$$
(19)

A similar result is true for

$$y^{n} \frac{\partial^{n}}{\partial y^{n}} G \begin{bmatrix} x \\ y \end{bmatrix}$$

$$x^{n} \frac{\partial^{n}}{\partial x^{n}} G \begin{bmatrix} x \\ y \end{bmatrix} = (-) G \begin{pmatrix} m_{1}, m_{2} \end{pmatrix}; (m_{1} + 1, m_{2}), m_{3} \\ (p_{1} + 1, p_{2}), p_{3}; (q_{1} + 1, q_{2}), q_{3} \end{bmatrix} \begin{pmatrix} x^{-1} \\ y \\ (b_{q_{1}}), 1; (d_{q_{2}}) \\ (f_{q_{3}}) \end{pmatrix}$$
(20)

A similar result holds for

$$y^n - \frac{\partial^n}{\partial y^n} G \begin{bmatrix} x \\ y^{-1} \end{bmatrix}$$

The proofs for (19) and (20) are very simple and follow by expressing the G-function on the left hand side as in (1), changing the order of integration and differentiation and again using (1).

Particular cases:—Putting $m_2 = q_2 = 1$, $n_2 = n_3 = p_2 = p_3 = q_3 = 0$ and making use of the formula given by Bajpai⁶ viz.

we get the known results' from (2), (6), (10), (12), (19) and (20).

ACKNOWLEDGEMENT

I wish to express my sincere thanks to Dr. S. D. Bajpai of Regional Engineering College, Kurukshetra for his guidance in the preparation of this paper.

REFERENCES

1. GULATI, H. C., Finite series for G-function of two variables (Communicated for publication).

2. GULATI, H. C., Def Sci J, Vol 21, No 2 (1971), 101-106.

3. GULATI, H. C., Derivatives of G-function of two variables (Communicated for publication).

4. AGARWAL, R. P., An extension to Meijer's G-function. Proc. Nat. Inst. Sci. India, 31, A, (1965), 536-546.

5. SHABMA, B. L., On the generalised functions of two variables. Ann. Soc. Sci. Bruxelles Ser 1, 79-1 (1965), p. 26-40.

6. BAJPAI, S. D., Some results involving G-function of two variables (Communicated for publication).

7. LUKE, Y. L., "The Special Functions and their Approximations, Vol. I" (Academic Press, New York & London) 1969, pp. 149-152.

8. RAINVILLE, E. D., "Special Functions" (Macmillan Co, New York), 1965, p 32, eq 9.