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The problem of determining;he body of revolution having minimum drag has been considered in 
the free molecular flow region under given integral constraints and in combination with the 
C B ~ Q U ~ W ~ ~  v@@ 'ona. It  has been shown that for a given surface aka or volume, the optimum sha e 
is sharp ma& i t  diameter ia prescribed and it ia flat nosed if the length is prescribed. when t i e  
volpme and thiokness are known the optimum shape has Cusp at the origin whereas if surface - and diameter are given the optimum body sha e is independent of the value of k , a para- 
?* depen@nt upon the temperature ratio and tpe w e d  ratio. 

There have been several studies on the problem of dete-ning the aerodynamic shapes 
of bodies having minimum drag under different geometric constraints on the body in 
the recent past studies*. Most of these are in the 'Continum flow' regime, ie, in the 
flow wh;ch is such that the mean free path is &mall with respect to a characteristic dimemion 
of the body. b u t  in case of 'free molecular flow', the ratio of the mean tree path to a 
characteristic dimension of the body is large compared to unity and as such the aerody- 
namic drag ie governed by the interaction of the impinging molecules and the surface. 
It is general$ assumed that the molecules hitting the surface are first absorbed and then 
remitted with Maxweilian velocity distribution and that the temperature of the remitted 
molecules is identical with the sqface temperature. The drag so obtained has been used 
by some authord-* to the problem of d3temining the body of revolution havingminimum 
drag with the constraints that the length and the thickness of the body axe specified. In 
these analyses the body has been assumed to be slender, ie, the value of the thickness 
ratio is such t.hat 7 < < 1. Tang has studied the problem for the non-slender body of 
revolutiob for a given length and a given diameter. These results are necessarily limited 
in the sense that the length and the diameter of a body are not the only relevant parameters 
when considering optimum body profiles. If is, therefore, essential to extend the analysis 
when there are integral constraints on the body. Here we consider the problem of finding 
the non-slender body of revolution of minimum drag in free molecular flow under integral 
constraints, ie, when either the surface area or the volume of the body iq essentially 
specified. 

G E N E R A L  F O R M U l j A T I O N  O F  T H E  P R O B L E M  

The general problem may be defined as follows : 
Suppose it is required to extremise an integral of the form 

$?r 

J ,  3 fl b r r  yf) +j $1 ( Y , ~ A  ax (1) 
$4 

with respect to the class of axes satisfying certain prescribed boundary conditions and alw 
mtiaf@ng an integral oon~traint of the form 
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Then according to the usual practice, the quantity which is to be extremised is 

where 
f = fi + hf2 
+= & + A 4 2  

and A is a variable Lagrange multiplier. 

Since the problew is of Bolea type in the c~lculus of variations, we accordingly write 
the first variation of J which is given by 

a 
85 .. ( f  yi 8yii-f yf S Y ~ )  f [U - i/ 4s; ) & 4- 4k SY - & 18 Y (4) 

Y $1 

For extremum SJ=O and from the familiar arguments concerning the arbitrarg variations, 
this equation leads to the following conditions : 

a 
(4 Qr - 4~ = 0 (Euler Equation) 

In case the function 4 is such that it does not contain the variable s explicitly in it then 
on integration the b t  integral of the Euler equation is obtained as 

6 QY -+(y ,  i) = 0 
where C is an integral constant. 

(ii) The condition which must be satisfied at; the initial point 
1 f y i - ( & ) ~ i =  0 

(iii) The condition whioh must be gatidled at the final point 

( 4 f y r  + ( # 9 ) ~ f  = 0 ( when. the final valum of y  is not prescribed 

(a) ( 4- i 6 ) = 0  { when the final value of i is not prescribed 

(iv) In addition to the above conditions, also the Legendre's condition of the problem 
must always hold at  every point of the optimum arc, ie, 

Qt$ -3 0 

F O R M U L A T I O N  O F  T E E .  E X A C T  P R O B L E M  

Having given a broad outline of the general problem of the calculus of variations under 
which we formulate our problem of finding the optimum shape of the body in free molecular 
flow whose drag ia minimum, we now define our exact problem. The drag function, 
under the assumptions defined and also assuming that the body has a flat nose of radius yi 
and tbe drag due to the baso is neglected, is given by 

2, 
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where q denotes the free-stream dynamic pressure: x  the axial distan~e, y (%I the radius of 
the body, $the derivative dy/& and k a constant dependent upon the temperaturc: ratio 
and the speed ratio. The subsoripts i and f refer respectively to the initial and final point+. 
Under the scheme given in the general formulations, the problem under consideration should 
have any one of the following two integral constraints : b 

Case A :-The surface area of the body is known to be a given quantity, ie 
5 2  

3 

Case 3 :-The volume of the body is known to be a prescribed quantity, ie, 
9 

V 
-=Spas  7r (7) 

4 
Also if it is assumed that, in addition, either the length 1 or the base diameter t is prwribed 
then the minimal problem is to find in the class of arcs y(x), the one which satisfies either 
(6) or 17) and is such that the functional (6) is a minimum. Obviously the defined problem 
falls into the category of the general formulation of the problem given earlier. 

8 0 L U T I O N  O F  T H E  P R O B L E N  
Case A :-In this case 

f (k + &2) gia + yjs (8) 

2k yy2 + A y + = (l+Z)* (9) 

Therefore the functions f and + must satisfy the four conditions given earlier. 

The h t  integral is here given by 

. - 
NOW in this particular class of problem, there can be further two sub-olasses, ie, (a) the 
case when the length of the body is f& and the diameter is known and (b) the case when 
the diameter is free but the total length is known. 

We first consider the situbtions (a) and from the condition (ii) and (iiib), we have 

Also the condition (iv) gives 

Now if we examine (lo), (11) and (153, we see that the optimum curve passes though 
the origin, ie, the body has a sharp nose. To obtain the equation of the curve d e h b g  
this body we must integrate the first integral under the conditions that Xi = 0, Yi = 0. 
We therefore obtain 
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~ I W  the optimum body under the conditions that the surface area and the diameter of 
the body am known qbantities is conical in shape passing through the origin. This equation 
contains the Lagrange constant X whose value is determined from the integral constraint 
and is given by 

n" A =  - 
8 Sa (15) 

Therefore the equation of the body becomes 

Here we observe that the optimum body shape is independent of the parameter k, ie 
independent of the temperature ratio and the speed ratio. Once the body shape is known 
it is easy to find the drag by using (5). In case we define the drag coefficient 

2 0  - 
= mqP , we obtain the following result 

where T is the thickness ratio dehed  as 
7 = 111 

and 
(18) 

A = ( In2;. - 1 j-* (19) 

We thus see that the drag of the optimum body is linearly dependent upon the value of k. 
4 5  \ 

The relation between 7 and CD is represented in Fig. 1 for three different values of k. 

From (14), (18) and (19) we see that the optimum thickness ratio is given by 
T = 2 A  (20) 

Again in the situation (b) when the length of the body is prescribed the first 
hitegral, the conditions (ii) and @a) are respectivery represented by 

tocn - 
Fig, ,I-Drag ooeffioient for givep vaIgea ~f b, 

2k y ya A Y  -- 
(1+&8)3/2 (1+ yap = 0 (21) 

+ 2 9 7 = 0  (23) 

If we examine (21) and (22),  we observe 
that there is no possibility of the optimum 4 
cutve passing through the origin and hence, 
ihe optimum body is blunt. Here also the 
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Legendre's condition (13) holds and as a consecpence of that at every point (A + k) < 0 .  
The values of if and yi are obtained from 

where 
Yf = z&p 
yi = qji2 

The solution of these equations should be such that 
Y , < l , Y f < l  

Now the first integral (21) gives 

Since 

the relation (26) leads to  

= a P (A, +, k) +-B (27) 
Equations (26) and (27) are the parametric representation of the optimising curve. 
Also from (26) we obtain the initid and final values of t1.e radius in the form 

yi = Yi  (6, k) (28) 

Also (27) gives 
0 = C ( 3 (A, ~ i ,  k) } + E  
1 = c dP(A,yfikk)) + E  (31) 

Relations (30) and (31) determine the value of the constfht C in terms of A. To h d  the 
a h e  of h we make use of the integral constraint that the surface are8 of t%e body is 
a prescribed quantity. Knowing X we know the values of yi and Yf from (28) and (29) 
rmpectivelfr . , 

Now if here we define the drag coefficient CD as D/2?rplB, then from (8) we can 
deduce that , , 

Case B :-In this cme 
a 

(33) 



Therefore the &st integral of the Euler equation is given by 

and the Legendre's condition reduces to 

which shows that a t  every point along the optimal arc y B  < 2. As in Ckse A, here also 
two different situations can arise, (a) when,the diameter of the body is specified but the 
length is free and (b) when the length is prescribed bnt the diameter is free.' 

In situation (a), the conditions (ii) and (iiib) give that 

C = O  (38) 

On examination of (33) and (38), we notice that the optimal o w e  passes through the 
origin and hence the minimum drag body is sharp nosed. Also the fist integral can now 
be written as 

which is to be solved under the given boundary conditions that xi = yi = 0; Yf = t/2. 
Also this equation show$ that $i = 0 which meam that the optimum, body has a cusp at 
the origin. Again 

therefore , 

Integrating and applying the condition that at the origin y = 0, wst obtain 
2, F(2+C) 

$ = -  x (1 + $9312 (42) 
Equations (40) and (42) act as the parametric representation of the o p t i d n g  curve, 
The value of the Lagrange parameter h is obtained w follows : 

Since the diameter is known, we have from (40) that 

On solving this equation ior fit, we w e  it to solve the integral 
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whkh gives the value of A for given valueof V. Now if we define the drag coefficient a 
2Dln q 8, we have in this case 

4 V 
0 ~ = 1 + ~ [ ,  c j y a y d x ]  , (46t 

0 

In eituation (b), when the length is prescribed but the final diameter is free, we have 
the first integral and the conditions (iif and (iii a) applicable and we thus obtain 

An examination of these relations shows that the optimum arc cannot pass through the 
origin and that the body is flat nosed. Also the Legendre'e condition (36) holde, ie a t  

every point of the extremal arc f a  < 2. The equation (47) shows that flia = 
-1+g6- 

2 
and fi is obtained from (48). Therefore from (46), we have 

L c= Yr (B - %i) (49) 
w h e ~  -, 

Again (46) may be rewritten as 
Ag = a + [as - Ayi (B  - Ay,)]f (MI 

where 
k!? 

a = (1 + 2js)3/2 
Therefore , 

Thus (50) and (51) represent the parametric equation or the optimum body. % 

Againo sinm the volume of the body ie supposed to be given, we have 



Numerical solution of the problem can be obtained by adopting the following procedure: 

Step I-Assume an appropriate value for Ayi. 
Step %-Integrate (51) and since 1 is known, we obtain the value of A. - S'tep 3-Using this value of A, calculate V from (52), 
Step 4-If the value of V so calculated is not equal to the specified value then the 

value of Ayi is further adjusted to satisfy the volume constraint (52). 
Step 5-Raving calculated the correct value of h the body shape is to be computed 

by the simultareous solution of (50) and (51). 

Also, in this case, if we define the drag coe5cient Cu as D/2~qla, then with the help of (5), 
we have 

C O N C L U S I O N S  

The problem of determining the optimum non-slender body of revaluticrq. in iree 
molecular flow under the integral constraint of tohe surface area or the v~lume has been 
solved for the situations when either thc length of the body or the final diameter of the 
b d y  is a known quantity. From the above general analysis we can make the following few 
general observations : 

(i) When the length is free aqd the final diameter of the body is given, the optimum 
body is sharp nosed irrespective of the fact whether the surface area or the 
volume of the body is the specified integral constraint; and when the length 
is known and the final diameter is free, the optimum body is blunt nosed. 

(ii) Also when the length is free and final diameter is given and the sariace area is 
the specified integral qon3train.t: then *he optimum -body does nct depend upon 
the value of the constant k but the drag coefficient does depend on the valve of h. 

(iii) When the firs] diameter of the body is a knom, quantity but the length is 
free and the integral constrJnt of the problem is that th vdume of the body 
is a given quantity then the optimum body has a cusp at  the origin. 

A C K N O W L E D G E M E N T S  

The authors are grateful to Dr. R. R. Aggscrwsal, PScO for his interest in this work 
and to the Director, Defence Science Laboratory, Delhi for his permission to publish 
this paper. 

R E F E R E N C E S  

1. MIELE, A,, J.-Rranklin Inst, 283 (1967), 169. 
2. CARTER, W. J., J. Aerospme Kci, 24 (1971), 627. 
3. TAX, B. S., J. Aqmpme 8ci, 25 (1968), 66. 
4. C m a ,  I. D.. J. Bermpace BCi, 25 ( 1 9 5 ~ ) ~  67. - . 
6. TAR, H, s . ,  J. Aero8p!ace Kc'oi, 25 (1968), 263. 
6. TAX, H. S., Quart Appl Matfre, 17 (1969), 311. 
7. TAX, H, S., J. Aerospace Hci, 26 (1969), 360. 
8. MIELE, A., "Theory of Optimum Aerodynsmic shapes", (Academic Prees, New York), (1966), 416. 4 
9. TAN, a. S.,"Theory of Optimum AerodyncmibShapee", (Amdemic Press, New York), (1966), 423. 


