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The problem of determining‘the body of revalution having minimum drag has been congidered in
the free molecular flow region under given integral constraints and in combination with the
calonius of variations. It has been shown that for & given surface atea or volume, the optimum shape
is sharp nosed if diameter is prescribed and it is flat nosed if the length is prescribed. When the

. volume and thickness are known the optimum shape has cusp at the origin whersas if surface

~ area and diameter are given the optimum body shage is independent of the value of &, a para-

- meter dependent upon the temperature ratio and the speed ratio. :

There have been several studies on the problem of determining the aerodynamic shapes
of bodies having minimum drag under different geometric constraints on the body in
the recent past studies!. Most of these are in the ‘Continum flow’ regime, ie, in the
flow which is such that the mean free path is small with respect to a characteristic dimension
of the body. ~But in case of ‘free molecular flow’, the ratio of the mean tree path tc a
characteristic dimension of the body is large compared to unity and as such the aerody-
namic drag is governed by the interaction of the impinging molecules and the surface.
It is generally agsumed that the molecules hitting the surface are first absorbed and then
remitted with Maxwellian velocity distribution and that the temperature of the remitted
molecules is identical with the surface temperature. -The drag so obtained has been used -
by some authors?-® to the problem of determining the body of revolution having minimum
drag with the constraints that the length and the thickness of the body are specified. In
these analyses the body has been assumed to be. slender, ie, the value of the thickness
ratio is such that 7 << < 1. Tan® has studied the problem for the non-slender body of -
revolution for a given length and a given diameter. These results are necessarily limited
in the sense that the length and the diameter of a body are not the only relevant parameters
when considering optimum body profiles. T is, therefore, essential to extend the analysis
when there are integral constraints on the body. Here we consider the problem of finding
the non-slender body of revolution of minimum drag in free molecuiar flow under integral
consltéaints, ie, when either the surface area or the volume of the body is essentially
specified. \ ' .

GENERAL FORMUL‘ATION OF THE PROBLEM
The general problem may be defined as follows : ,
Suppose it is required to extremise an integral of the form

2, | ‘
Jl = fi ¥ yf) +f ¢, (9 9) dx , (1)
%3 :

' wit.h respect to the class of arcs satisfying certain prescribed boundary conditions and alsc
satisfying an integral constraint of the form ' o

: i . o
e = il + [ 2 00 §) o B
, % ~ ' ‘
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Then according to the usual practice, the quantity which is to be extremised is

T=nANe=f )+ @i d ®
where ﬁ‘ : | |
f=hA+AS
$= ¢1+7\¢z

and A is a variable Lagrange multiplier.

Since the problem is of Bolza typein the ca.lculus of variations, we accordmgly write
the first Vana,mon of J which is gwen by

87 = (s ik fy )+ 6 — ki) 50+ 45 2y ] + f (s — g- 5 Byis @

For extremum 8/=0 and from the familiar arguments concermng the arbitrary variations,
this equation leads to the following conditions ;

() ¢y — -cfc—c- ¢y =0 (Euler Equation)
In case the function ¢ is such that it does not contain the variable # explicitly in it then
on integration the first integral of the Euler equation is obtained as

gy —9$ ) 0
where O is an integral constant,

(ii) The condition which must be satisfied at the initial point
- T4 — (4 )z =0
(iii) The cond1t10n which must be satisfied at the ﬁnal point

(a) fyr+ (dy)zp=0 { when the final values of y is not preseribed -

: ) (4— i 9) wf% { when the final value of  is not prescribe(i

(iv) In addition to the above conditions, also the Legendre’s condition of the problem
must always hold at every pomt of the optimum arc, ie,

dyy > 0
FORMULATION OF THE EXACT PROBLEM

Having given a broad outline of the general problem of the calculus of variations under
which we formulate our problem of finding the optimum shape of the body in free molecular
flow whose drag is minimum, we now define our exact problem. The drag function,
under the assumptions defined and also assurmng that the body has a flat nose of ra,daus Y-
and the drag due to the base is neglected is given by :

= ky2 +y,n+2kf(1+ o ()
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where g denotes the free-stream dynamic pressure, # the axial distance, y () the radius of
the body, # the derivative dy/dz and % a constant dependent upon the temperaturc ratio
and the speed ratic. The subscripts ¢ and f refer respectively to the initial and final points.
Under the scheme given in the general formulations, the problem under consideration should
have any one of the following two integral constraints : )

Case 4 :—The surface area of the body is known to be a given quantity, ie

&
s f . y,;s . . ;
7,;=f y(1+ gt de + 5 | S (8)
Case B :—The volume of the body is known to be a prescribed quantity, ie,

wf ‘ . L . ’
w=[pe S m
xt ’ N

Also if it is assumed that, in addition, either the length  or the base diameter ¢is prescribed
then the minimal problem is to find in the class of arcs y(z), the one which satisfies either
(6) or (7) and is such that the functional (b) is a minimum. Obviously the defined problem
falls into the category of the general formulation of the problem given earlier.

SOLUTION OF THE PRVOBLEM
Case A :—1In this case -

~

=432 g2 +gp | ‘ ‘ ®)
P gy PAvVIEE @
Therefore the functions f and ¢ must satisfy the four conditions given earlier.
The first integral is here given by | ~ ‘
Gyl Ay _ g : (10)

HM72 O+ ‘\
Now in this particular class of problem; there can be further two sub-classes, ie, (a) the
case when the length of the body is free and the diameter is known and (b) the case when
the diameter is free but the total length is known.

We first consider the situations (a) and from the condition (i) and (iiib), we ha,v;e\

. 24y Ay ¥ . :
: - ‘ C=0 - (12)
Also the condition (iv) gives ~ '
442 (13
'S 2k—1 (1)

Now if we examine (10), (11) and (12), we see that the optimu}n curve passes through
the origin, ie, the body has a sharp nose. To obtain the equation of the curve defining
this body we must integrate the first integral under the conditions that z; =0, 3 = 0.

We therefore obtain .
| v= =] " (14

2k —A
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Thus the optimum body under the conditions that the surface area and the diameter of
the body are known quantities is conical in shape passing through the origin. This equatlon
contains the Lagrange constant A whose value is determined from the integral constraint:
and is given by

w2 gt h
Therefore the equatlon of the body becomes :
' 16 52 i :
B y—-—(—‘"—{zrl-— 1) z (16)

Here we observe that the optimum body shape is independent of the parameter &, io
1ndependent of the temperature ratio and the speed ratio. Once-the body shape is known
it is easy to find the drag by using (5). In case we define the drag coefficient

2D »
"Cp = — , we obtain the following result
wgl?

4R A 1 :
01) =1 + (1 + Ag)i P : (17) /7,
where 7 is the thickness ra,tlo defined as . '
r=tl (18)
and o Lt -
' 16 S2 ‘-t ’

We thus see tha,t the drag of the optimum body is 11nearly dependent upon the value of lc

. The relation between and Cp is represented in Flg 1 for three different values of %.

-
‘ From (14), ( 18) and (19) we see that the optimum thickness ratio is given by
=924 o ' (20)

Again in the situation (b) when the length of the body is prescrlbed the first
integral, the conditions (ii) and (iiia) are respectively Tepresented by

kyyr Ay

4-07 :
| G g~ ¢ @Y
T 38 2—!—!};2
| (k+A/2) ¥i—2k y; y; g7 —
3.0+ Ay g.~=, . R ‘
— et =0
1 T+ (22)
2 . 24P Ayr 9
¥ 2k yryp - - :
5 WY TR T e T
2.0 +2 =0 . (23)
's . — N , If we examine (21) énd (22), we observe
10-2 o6 .. 0 e U8 that there is no possibility of the optimum 4

toc, —* cutve passing through the origin and hence,

Fig, 1—Drag coeffioient for given valyes of , the optimum body is blunt. - Here also the

N
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Legendre’s condition (13) holds and as a conseq‘uence of that at every pomt (A + k) <O0.
The values of ¢ and ¥; are obtained from

Y (4 — 4k — N2 — 4ak) 4 2Y% (6—~8k2—-z\2—6‘)«k)+ '

+Y;(12——16k2——-/\2—~8¢\k)+4__ 0. (24)
Y3 (38 — 483) + 2V, (A — 2% — 2k) + 4 (k + A/2)2 =0 (26)
where
' Yy = gy
Y; = g

The solution of these equations should be such that
. Y; < 1, Yy < 1 ’
Now the first 1ntegra,l (21) gives

o+ g
y= (2k—~)«)yﬂ~—A

wfdy

2%k — A) 42
e=ofarin{ k[(w:)—!-!»y‘-*( e fa .
= O0F\¢k)+E S )
Equations (26) and (27) are the parametric representation of the optlmlsmg curve,
Also from (26) we obtain the initial and final Values of the radms in the form

(26)

Since

the relation (26) leads to

= 4 (¢, A ) | o - (28)

' !lf = g (¢, A, k) B o . (29):
Also (27) gives o S ‘ :
0=C{F\ys®)}+E T e " (30)
l=C{FQMyH}+E ' ’ (31)

Relations (30) and (31) determine the value of the constaht € in terms of . To find the
value of A we make use of the integral constraint that the surface ares of the body is
a prescribed quantity. Knowmg A we know the values of y; and Y5 from (28) and (29)
respectively.

Now if here we define the drag coefﬁment C’D as D/21rql” then from (5) we can
deduce that .

. [
2 A ¢

Op= (k=2 Gl + T + 5o + T [1 +3 fy* dw] 8
Case B :—In this case | v

kg ) ' : .
¢=_——_(1+-';2)* FAg , - (33)

f=rkyd4+9r I (34)
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)

Therefore the first integral of the Euler equatlon is given by
2kyy?

T+ 7

and the Legendre 3 condition reduces to

—A2=0 -~ (35)

2 — y ‘
which shows that at every point along the optimal arc §2 < 2. As in Case A, here also
two different situations can arise, (&) when the diameter of the body is specified but the
length is free and (b) when the length i is prescribed but the dlameter is free,

In situation (a), the conditions (n) and (iiib) glve that

2 % + 74 , | .
2763/;——2703/.—(—1——_;_%)%/,—2— =0 , (37)
‘ C=0 | ,, - (38)

On examination of (33) and (38), we notice that the optlmal ourye passes through the
origin and hence the minimum drag body is sharp nosed Also the ﬁrst integral can now
be written as

2k | _
T —AY=0 (39

_ which is to be solved under the given boundary condltlons that z; = y; = 0; i’lf = /2.
Also this equation shows that 7; = 0 which means that the optimum body has cusp at

the origin. Again v
k ' ﬂ’ . S ‘ )
X TR | - “
therefore : : -
2k ( 2— ) z/“‘) ; ) ’ ‘
J at e’ ZRBENEY - @D
Integra,tmg and applymg the condition that at the origin y = 0 we obtam ,
7(2 4% :
T = ,\ XdF ppr , (42)
Equations (40) and (42) act as the parametric representa.txon of the optimising ourve ,
The value of the Lagrange parameter A is obtained as follows :

Since the diameter is known, we have from (40) that

M= 4k sz’w”)w | (43)

On solving thm equation for 7y, we use it to solve the integral
7 "

) %k : 74 vdw . , ' _— ‘
7= ()| wim T ST )
0

~

A
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" which gives the value of A for given value of V Now 1f we deﬁne the drag coefficient &
2D/w q 3, we have in this case

Oy =1 + i[% + f ki dz] ¥ (45)
0 ‘ '

In situation (b), when the length is prescnbed but the final diameter is tree, we have
. the first integral and the con dltlons (11) and (iiia) applicable and we thus ebtain

27::3/3/2

. Tram—MW-=C \ (46)
270.'/5[1—‘@—_{_—_}?9‘1::75]:0\ - (47)
: 2 1 |

An examination of these relations shows that the cptimum arc cannot pass thrdugh the
origin and that the body is flat nosed. Also the Legendre’s condition (38) holds, ie at

every point of the extremal arc #2 < 2. The equation (47) shows that ;2 = 1+\/5
and fyis obtamed from (48). Therefore from (46), we have ‘ )
X C=y; (B — M) | . (49)
where pEa . ' :
o g Ll VE)

B =k&.. —
: — 3/2

o (1 L 1 +V_ )

Agam (46) may be rewritten as ' ‘ ;
Ay =0 + [a' — Ay (B — Ayt ‘ . - (50)
where
.
o T+ P
Therefore : o o |
1 4 ’ y |
A = f ( ;l/) (51) |
9,. . o N - ‘\\ i )

Thus (50) and (51) represent the parametric equatlon ot the optimum body. o

Againg smce the volume of the body is supposed tc be given, we have

»V_nkf{oc+ [az—Aye(B—~"%)] }11 T T -\Ay..(°1‘§-—~>«y.-) ]* };‘de"‘ (52:)
vwhere : *% | | |

22—
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Numerical solution of the problem can be obtained by adopting the following progedure:
‘Step 1—Assume an appropriate value for Ay;. )
Step 2—Integrate (51) and since I is known, we obtain the value of A.

~ Step 3—Using this value ot A, calculate ¥ from (52).

Step 4—1If the value of V so caleulated is not equal to the specified value then the
value of Ay; is further adjusted to satisty the volume constraint (52).

Step 5—Having calculated the correct value of A the body shape is to be computed
by the simultareous solution of (50) and (51).

Also, in this case, if we define the drag coefficient C» as D/2vrql2 then Wlth the help of (8),
we have .

2 . . .< i .
L 0 o

CONCLUSIONS

The problem of determining the optimum non-stender body of revolution in free
molecular flow under the integral constraint of the surface area or the volume has been
solved for the situations when either the length of the body or the finak diameter of the
body is a known quantity. From the above general analysis we can make the following few
general observations : ,

(i) When thelength is free amd the final diameter of the body is given, the optlmum
‘body is sharp nosed irrespective of the fact whether the surtace area or the
volume of the body is the speclﬁed integral constraint; and when the length
is known and the final diameter is free, the optimum body is blunt nosed.

(ii) Also when the length is free and final diameter is given and the surtace area is
the specified integral constraint then the optimum body doees nct depend upon
the value of the constant % but the drag coefficient does depend on the valye of k.

(iil) When the firal diameter of t&m body is a knowy quantity but the length is
free and the integral constraint of the problem is that the volume of the body
is a given quantity then the optlmum body has a cusp at the origin.

ACKNOWLEDGEMENTS

- The authors are grateful to-Dr. R. R. Aggarwal, PScO for his interest in this work
and to the Director, Defence Science Laboratory, Delhi for his permission to publish
this paper.

REFERENCES
. M1mLg, A., J.-Franklin Inst, 288 (1967), 169, )
. CARTER, W. FJ., J. derospace Sei, 24 (1971), 527.
. Tax, H. 8., J. Aerospace Sci, 25 (1958), 56.
. GHaxG, I D., J. derospace Sci, 25 (1958), 57.
Tax, H. 8., J. Aerospace Sci, 25 (1958), 263.
. Tax, H. 8., Quart Appl Mathe, 17 (1959), 811.
. TAN, H. S., J. Aerospace Sci, 26 (1959), 360.
. Mintz, A., “Theory of Optimum Aerodynamic Shapes”, (Academlc Press, New York), ( 1965), 41s.
. Tax, H. 8.,*Theory of Optimum Aerodynamio Shapes”, (Academic Pross, New York), (1965), 423,

R - A N



