EXPANSION OF KAMPÉDE FÉRIET FUNCTION IN SERIES OF OTHER KAMPE DE FÉRIET FUNCTIONS

A. D. Wadhwa
Kurukshetra University, Kurukshetra
(Received 12 September 1970; revised 24 December 1970)

In this papor an expansion formula for the Kampé de Fériet function has been given in series of other such functions.

Luke \& Coleman ${ }^{1}$ have given expansion formula for a hypergeometric function in series of other hypergeometric functions. Field \& Luke ${ }^{2}$ have generalized this formula by Laplace transform techniques. Wimp \& Luke ${ }^{3}$ have generalized this result of Field \& Luke ${ }^{2}$ further to include a multiplier of a power of independent variable. In this paper we have established such an expansion theorem for the Kampé de Fériet function by using the result given by Wimp \& Luke ${ }^{3}$. For the sake of simplicity we represent the hypergeometric function of two variables given by Kampé de Fériet ${ }^{4}$ as

$$
\left.{ }_{F}^{F} \begin{array}{l}
g: h ; H \tag{1}\\
i: j
\end{array}\right]\left[\begin{array}{l}
u_{g}: \overline{b_{h}} ; B_{H} ; \\
\alpha_{i}: c_{j} ; C_{J} ; x, y
\end{array}\right]=\sum_{p, q=0}^{\infty} \sum_{\left(a_{i}\right)_{p+q}} \frac{\Pi\left(a_{q}\right)_{p+q} \Pi\left(b_{h}\right)_{p} \Pi\left(B_{H}\right)_{q} x^{p} y^{q}}{\Pi\left(C_{J}\right)_{q} p!q!}
$$

where $(\mu)_{p}^{\prime}$ stands for the symbol $\Gamma(\mu+p) / \Gamma(p), \mu_{i}$ denotes the set of parameters $\mu_{1}, \mu_{2}, \ldots, \mu_{i}$. Colon (:) and semicolon (;) separate the terms of the form $\left(\alpha_{i}\right)_{p+q},\left(r_{j}\right)_{p},\left(C_{J}\right)_{q}$ etc.

Ragab ${ }^{5}$ has shown that the series on the right hand side of (1) converges for all finite x, y if $g+h \leqslant i+j$, and $g+H \leqslant i+J$, converges for $|x|+|y|<\min$ (1. 2^{i-g+1}) if $g+h=i+j+1$, and $g+H=i+J+1$. It can easily be shown that the series converges if

$$
g+h=i+j+1, \quad g+H=i+J+1
$$

and

$$
|x| \leqslant 1,|y|<1, \operatorname{Re}(X)>0
$$

or

$$
|x|<1,|y| \leqslant 1, \operatorname{Re}(Y)>0
$$

or

$$
|x| \leqslant 1,|y|<1, \operatorname{Re}(X)>0, \operatorname{Re}(Y)>0,
$$

where

$$
X=\Sigma \alpha_{i}+\Sigma c_{j}-\Sigma a_{g}-\Sigma b_{h} ; \quad Y=\Sigma \alpha_{i}+\Sigma C_{j}-\Sigma a_{g}-\Sigma B_{H}
$$

Luke \& Coleman ${ }^{1}$ have given an expansion formula for a hypergeometric function in series of other hypergeometric functions. Field \& Wimp ${ }^{2}$ have generalized this formula
by Laplace transform techniques. Wimp \& Luke ${ }^{3}$ have generalized this result ${ }^{2}$ further, to include a multiplier of a power of the independent variable by establishing the following theorem :

Theorem

(i) Let none of the following be negative integers $\mu ; \alpha_{t}+\mu-1 ; c_{r}-\mu-1 ; \gamma ; \beta_{x}-1$.
(ii) Let p, q, r and s be positive integers or zero and $p+r \leqslant q+s \quad$ or $q+s+1=p+r$ if $|z w|<1$, $p+t \leqslant q+u+1$ or $q+u+2=p+t$ if $|z|<1$, $r+u+1=s+t$.
(iii) Let $0<w<1$.
(iv) Let the following identities be satisfied:

$$
\begin{gathered}
\mu(s-r-2)+\Sigma c_{r}+\Sigma \beta_{u}-\Sigma \alpha_{t}-\Sigma d_{s}<1 / 2 ; \\
c_{r}>0, \beta_{u}+\mu>0 .
\end{gathered}
$$

Then

$$
\begin{align*}
& w^{\mu}{ }_{p+r} F_{q+s}\left(a_{p}, c_{r} ; b_{q}, d_{s} ; z w\right) \\
& =\frac{\Pi\left(c_{r}\right)-\mu \Pi\left(\alpha_{i}\right)_{\mu}}{\Pi\left(d_{s}\right)-\mu} \sum_{u} \sum_{\mu}^{\infty} \frac{(2 n+\gamma)(-\mu)_{n}}{n!(n+\gamma)_{\mu+1}} . \\
& \cdot p+t+1 F_{q+u+2}\left[\begin{array}{l}
\mu+1, \alpha_{t}+\mu, a_{p} ; \\
+\mu-n+1, n+\gamma+\mu+1, \beta_{w}+\mu, b_{q} ; z
\end{array}\right] \cdot \\
& \cdot r+u+2 F_{s+t}\left[\begin{array}{l}
\left.-n, n+\gamma, c_{r}-\mu, \beta_{u} ;{ }_{w}\right] \\
a_{t}, d_{s}-\mu ;
\end{array}\right. \tag{3}
\end{align*}
$$

Authors ${ }^{3}$ further proved that (3) is defined and converges under stated hypothesis (2).
By employing the above theorem, we shall establish the following theorem;

THEOREM

(i) Let none of the following be negative integers
(a) $\rho ; \gamma ; \theta_{x}-1 ; \beta_{t}+\rho-1 ; B_{H}-\rho-1$;
(b) $w ; \delta ; \psi_{0}-1 ; \phi_{g}+w-1 ; b_{h}-w-1$.
(ii) Let g : h, H, i, j, J be pcsitive integers or zero and
(a) $g+H \leqslant i+J, \quad g+t \leqslant i+u+1, \quad J+t \leqslant H+u+1$,
(b) $g+h \leqslant i+j, g+s \leqslant i+v+1, J+s \leqslant H+v+1$.
(iii) Let
(a) $0<\mu<1$,
(b) $0<\lambda<1$.
(iv) Let the following inequalities be satisfied:
(a) $\rho(J-H-2)+\Sigma B_{H}+\Sigma \theta_{u}-\Sigma C_{J}-\Sigma \beta_{k}<1 / 2 ; \quad B_{H}>0, \theta_{u}+\rho>0$,
(b) $w(j-h-2)+\Sigma b_{h}+\Sigma \psi_{v}-\Sigma c_{j}-\Sigma \phi_{s}<1 / 2 ; \quad b_{n}>0, \psi_{v}+u>0$.

Then
$F=\lambda^{\omega} \mu^{\rho} \underset{i}{F} \begin{gathered}g: \hbar ; H \\ i: j ; J\end{gathered}\left[\begin{array}{l}a_{g}: b_{h} ; B_{H} ; \lambda x, \mu y \\ \alpha_{i}: c_{j} ; C_{J} ;\end{array}\right]$
${ }_{\text {. }}{ }^{g}: s+1 ; t+1\left[\begin{array}{l}a g \\ a_{g}\end{array} \dot{\phi_{s}}+w, w+1 ; \beta_{u}+\rho, \rho+1 ;\right.$
$i: v+2 ; u+2\left[\alpha_{i}: w-m+1, w+\delta+m+1, \psi v+w ; \rho-n+1, \rho+\gamma+n+1, \theta_{u}+\rho ;{ }^{x}, y\right]$.
$\cdot h+v+2 F_{j+s}\left(-m, m+\delta, b_{h}-w, \psi_{v} ; \phi_{s}, C_{j}-w ; \lambda\right)$.
. $H+u+2 G_{J}+t\left(-n, n+\gamma, B_{H-\rho}, \theta_{u} ; \beta_{b}, C_{J-\rho} ; \mu\right)$
Proof : Expressing the Kampé de Fériet function in (5) as in (1) we have

$$
\begin{aligned}
F & =\lambda^{w} \mu^{\rho} \sum_{p, q=0}^{\infty} \sum_{p=0} \frac{\Pi\left(a_{g}\right)_{p+q} \Pi\left(b_{h}\right)_{p} \Pi\left(B_{H}\right)_{q}(\lambda x)^{p}(\mu y)^{q}}{\Pi\left(a_{i}\right)_{p+q} \Pi\left(c_{j}\right)_{p} \Pi\left(C_{J}\right)_{q} p!q!} \\
& =\lambda^{w} \sum_{p=0}^{\infty} \frac{\Pi\left(a_{g}\right)_{p} \Pi\left(b_{h}\right)_{p}}{\Pi\left(\alpha_{i}\right)_{p} \Pi\left(c_{j}\right)_{p}} \frac{(\lambda x)^{p}}{p!}\left\{\mu_{g+H}^{p} F_{\left.i+J\left(a_{g}+p, B_{H} ; \alpha_{i}+p, O_{J} ; \mu y\right)\right\}}\right.
\end{aligned}
$$

Now evaluating the expression in parenthesis with the help of (3) which is defined and converges under the conditions (a) of the hypothesis (4), we have

$$
\begin{aligned}
& F=\lambda^{w} \sum_{p=0}^{\infty} \frac{\Pi\left(a_{j}\right)_{p} \Pi\left(b_{h}\right)_{p}(\lambda x)^{p}}{\Pi\left(\alpha_{i}\right)_{p} \Pi\left(c_{j}\right)_{p} \quad p!} \frac{\Pi\left(B_{H}\right)_{-\rho} \Pi\left(\beta_{t}\right)_{\rho}}{\Pi\left(\theta_{u}\right)_{\rho} \Pi\left(C_{J}\right)_{-\rho}} \sum_{n=0}^{\infty} \frac{(2 n+\gamma)(-\rho)_{n}}{n!(n+\gamma)_{\rho+1}} . \\
& \cdot g+t+1 \not \boldsymbol{F}_{i}+u+2\left(\rho+1, \beta_{t}+\rho, a_{g}+p ; \rho-n+1, n+\gamma+\rho+1, \alpha_{i}+p ; y\right) \cdot \\
& \text {. } H+u+2{ }_{H} J+t\left(-n, n+\gamma, B_{H}-\rho, \theta_{u} ; \beta_{i}, O_{J-\rho} ; \mu\right) \\
& =\frac{\Pi\left(B_{H}\right)_{-\rho} \Pi\left(\beta_{t}\right)_{\rho}}{\Pi\left(C_{J}\right)_{-\rho} \Pi\left(\theta_{u}\right)_{\rho}} \sum_{n=0}^{\infty} \frac{(2 n+\gamma)(-\rho)_{n}}{n!(n+\gamma)_{\rho+1}}\left\{\begin{array}{l}
\lambda^{w}{ }_{F} \begin{array}{c}
g: t+1 ; h \\
i: u+2 ; j
\end{array} .
\end{array}\right. \\
& \left.\cdot\left[\begin{array}{l}
a_{g}: \beta_{t}+\rho, \rho+1 ; b_{h} ; \\
\alpha_{i}: \theta_{u}+\rho, \rho+\gamma+n+1, \rho-n+1 ; C_{j} ; y, \lambda x
\end{array}\right]\right\} \\
& \text {. } H+u+2 F J+t\left(-n, n+\gamma, B_{H}-\rho, \theta_{u} ; \beta_{t}, C_{J}-\rho ; \mu\right)
\end{aligned}
$$

Repeating this procedure once again for the expression in the parenthesis, we have (5).
We can derive a further result as a confluent form of the above theorem which follows upon using

$$
\lim _{a \rightarrow \infty}(a)_{n}(z / a)^{n}=z^{n}
$$

and, in (5), replacing λ by λ / δ and x by $\delta x ; \mu$ by μ / γ and y by γy and letting $\rightarrow \infty, \mu \rightarrow \infty$.

ACKNOWLEDGEMENT

I am highly grateful to Dr. S. D. Bajpal for his kind help during the preparation of this paper.

REFERENCES

1. Luke, Y.L. \& L. COLEMAN, Math. Comp., 15 (1961),233.
2. Field, J. L. \& J. WIMP, Math. Comp., 15 (1961), 390.
3. Wimp, J. \& LUKE, Y.L.,Rendiconti del Cercolo Mat. Palermo Ser 11, 11 (1962), 351.
4. APPELE, P. \& KAMPE DE FERIET, J., Fonctions hypergeometrique et hyperspheriques", (Gauther Villars) 1926.
5. Ragab, F. M., J. reine angew; Math. 212 (1963), 113.
