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We have considered the motion of a spherical, eylindrical or plane piston into a non-uniform
medium taking into account energy transfer by radiation. We have obtained approximate ana-
Iytic solutions for the physical situation (¢) when the medium is optically thin and (¢¢) when it is
optically thick. We have made use of technique due to Chernyi in which the flow variables are
expanded in series of powers of €, the density ratio across the shock. Temperature distribution
behind the shock front is depicted graphically for the limiting cases, mentioned above for a large
[ number of cases including the situations when the medium ahead of the shock is homogeneous
* or otherwise. .
: ¢

The equations governing radiation-gas-dynamics being highly non-linear integro-
differential or differential in different approximations such as the modified form of Schuster- .
Schwarzschild’s approximation?, optically thick approximation and optically thin appro-
ximation, the solutions have mainly been obtained by numerically integrating the differen-
tial equations in similarity variables 2 4. Some attempts at finding approximate analytic
solutions have recently been made by Traugott?, Wang® and Marshak?. Wang® has obtained,
employing Cheinyi’s technique®, some particular approximate analytic solutions upto
the zeroth order only, for the plane piston problem in an inhomogeneous medium for -
the optically thin case and the ‘local temperature approximation’, generally in terms of a
similarity variable and for some special opacity laws. As the previous numerical results%?
showed that the radiative transfer affects mostly density and temperature distribution,
while the pressure and velocity remain practically unaffected; the analysis in the Chernyi’s
method was simplified by the introduction of the assumption that the velocity and pressure
. behind the shock are the same as in the non-radiating case. Wang® has assumed the

plane piston (causing motion) to be cool.

We consider the approximate analytic solutions for the piston problem with thermal
radiation more generally, that is, when the piston is spherical, cylindrical or plane. We also
consider the cases when the piston has a finite temperature. We have treated the optically
thin and thick cases for different opacity laws governing different ranges of temperatures.
We have also employed Chernyi’s method® under the same assumptions as made by Wang®.
‘We have obtained the solutions for the optically thin case upto first order, zeroth order
solution being in a closed form while the first order solution is generally expressible in
terms of incomplete Beta functions which, however, can be integrated in a closed form
for special choices of the parameters. For the optically thick case, the zeroth order solution
for temperature is governed by the general form of diffusion equation. By introducing a
similarity variable, the solution of this equation is obtained in terms of confluent hyper-
geometric functions for a particular choice of the exponents « and fin the opacity law.

,gshe first order term in this case does not seem to be amenable to a closed form solution,
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BASIG EQUATIONS

" The relevent equatlons in terms of time ¢ and the Lagra.nglan co- ordmate 7) are; ‘. v
Equanon of commmty e

_ ’ o ",_ B R s R
« y . a.'l 3 - ‘pxj‘ 1‘ . - ‘ (1)
Equation of momentum : TP o
: ‘ 9% i ap
‘ = 8
Equation of ehergy_: ’ N )
90 7t 1
s TP T Py V.F 3)
K e=10T L (4)
dr | - '
. =K S (6)

where p is pressure, p density, T temperature, e mterna,l energy, PR isthe radlatlve energy
flux vector, z the one-dimensional space co-ordinate, K the absorption coefficient, = the
optical thm]mess j=1,2;3, for plane, cylindrical a.nd spherical symmetry respectively. 7 is
the Lagrangian co- ordmate defined by dy = py @1 dw, , where , is the value of z at the
initial mstant of tlme and py = 4 xy— is the initial density and wis a posmve constant,

Following Chemyl" we assume the following expanswns for x; p, p, T, eand FR :

x =294 ea® {22@ + .. .. ... o ~(6)

6 .p——”p(°7+¢p(1)+eﬁp<3) e ‘ ()
p=p(°)/e+p(1)‘+e PR o ' (8)

T—=TO T2 TO 4 .. .. . .. W
e=e(°)+ee<1)+eze(2)+....‘.... R (10)

7= FR<°> e pom +e e E )

~ The problem is discussed in two medm (1») optically tth medlum and (#) optmally
tluek medium. v o

OPTICALLY THIN MEDIUM L SN
We first consider the case when the medium is 0p’clcally thin. Followmg Bloor1° we take

energy flux vector FR and the absorptxon coefficient K as
V. F8 = 0 % TB— (I8 — 0%, oo m
K =k, p% Th—4 o oo (13)

 where o, ﬁ 0 C’ and %, are constants, (" being the tempefature of the piston.
(¢) We first consider the case when the piston is cool, that is, when C' =0,
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By using (12) and the gas l's,'w, m mdmesw = |
where Ris the gas constant e ’ \

Substituting the expansmns in (14), we get the foHowmg equatmns for the zeroth and first
order terms, :

, Pt , ‘ [ ‘ ‘
ag) ) a0) L a—1 : S \
e r
L ' ' of—2+1 o T 7 _
x1 @y Ly +E—a+ 1) | (0

The boundary conditions at the.shock are 4
20 () = 7, | .
W =20 = ., . =0 .
2P 3 (0)2~
————————— w
R r+1. , -
e ,pg(l) e pa(za e e X =0 ‘
e e® = o
pz(l) = p2(2) = ,, ‘. ‘ ... =0 )
Ta(o); Lt/z”‘ ‘ - o M
T, =0 k
Adar -
e )
2ec? (n + 1)2 .
(v :j_ DR

P =

I

"'74 =
where A4 is a constant and L =
Y a}(ﬂ)jw £
*"3:0,—(-)— that
is, t* is the instant of time at which the shock crosses the pa.rtlcle with the Lagrangian

‘Now we intr&duce a new variable t* related to  through » =

' co-ordinate 7. We define the s:mlla.nty va.nable pby p= T and this vanable lsrela,ted

tot* and ¢ by .
. - e (f—a) (n +1) o "
Thus we can write | o
E . - . ’ . ‘ 2n /
T, (1%) _ (1)271, T RCES | ) (19)
’ 'I’(O)v(t) : t ) - -

“
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Replacmg e by C T(°) and integrating (15) w1th boundary condltlons (17 ),, we get

. CRI——“(B——M) T(o '(t*) X

T(o) (tn) = (o) (™) [1 +
1

T Lat I

For air at a temperature below 15,000° K, 11: has been generally agreed that the constants
e and 8 can be a,pprommately taken to be 1and 9. In order that

T‘ ? (t,m) I
= , 2@ ® ’
‘may be a function of x alone, when « = 1, the similarity condition
‘ 2n (B—1)+1=0 , S (21)
must. be satisfied. Under these conditions, (20) reduces to ' T
© - :
) T (t,9) ’ o
T (l"') Ta(o) (t) 3 LT B ‘ |
o ””,“"’) m+D ~[1+P(M G—w) (n+1>\_1)] p=T
« 1 « 1 ) .
[(1 e "“—“w) (n = i P] ﬁf}_ @
 where the radiation parameter ' o | | 7
_C@e=0. (y—~1) 181 20—1)
r— 4 ”H J'os(nH) @)
" For the zeroth order pressure p® we take the non-radiating solutlon"‘ which is
2 p, $0? [ "o ‘ i
0= 2227 11 L k(1l— ] . ) .
A Rl (29
S N e ° K. |
where k= 2(_7—-oc)(n—|—l) -
The dens1ty p(") is obtained from the gas law, (22) and (24) and is glven by S

1 L 1_'  , ,
50 =pl[1 +k(1-,;)] [(J‘eﬂ)‘,‘"_j“” &+ +,r] T @)
* when o = 1, (16)reducesto
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Integratmg (26), we get ' g B ‘ o |
. W, IR A
1= 6D +1)n [(1—r)u"'+z‘} X
I @) ‘
[Al lnp. + B l%(l-l—k-—kp)—i—p(l—-dp"”‘)q— ‘
- . ) I . . . ) o ‘ o ’ i" . \ |
=7 o Ef—_———l-}-k*-kp,*d ] e \ (27
‘where . o
G R . "o e L : .
_ G—ae+D”
z ) . \ ;
_ (=0 [ o 1 / e
h=G—a T orve=n ) [ ®
.B\ = (l‘-—-I’),
| E—kF i \‘w DR J
y i | ‘. o : !
can be expressed in terms of lncomplete Beta functlon as -
e B, (1 By (1—- : L 29‘
T=Fy | B A —mm) — k( —-km,m);], (29),
. whers  F=—kmd (= ) kk’)#“‘ L
Em=13,..... themco mplete Beta function can be mtegra,bed and we  get | the follomng

solutions for m= 1 and 2

J
‘ (a) when m = 1, 7'

W= o+vu[a-nasr] x

x[Z Wl'n?[.c + B ln(1‘+k;:lc p)+D(l— I""")‘] Y '/(30) N
g - B - g
where ,4—~Al-—m,a3=31‘f‘-"i+k,’
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(b) when m= 2 the solutlon isgivenby -
) A
_ﬂWm=<w+nn[u—rnﬁ+r]fx,,»'a

[mmu+Bma+kkm+omﬂ—n+Da—y)]&)

| | Ek ' Ek = E
W??e?e ' Al.zAl‘""(1+k)= o P Bl+ 1+k2 » O=11%
Substituting the expansions (6) and (8) in (1), we get : o
‘ | gald 1 - ¥
an  pOgoi-l 2
. Integrating we get ’ ’
. . 1 J
Ny yony o ‘ .
oo [ LE—T m+r] d -
= f '[1+k—ku w8
The distance between thek plston-and the shock is gig_ggr ]oy‘. S I
. ; ) 1-; K .
‘—u [Q—T) w+ T :
d - (34
[ D+k—kﬂ B B8

(h’) ‘Now we conmder the case when the temperature g.t the i)istor_i is finite, that is, C‘f # 0.
* From equations (3), (12) and the gas h;v, we get » ;
2o yp R C ORI gy (3)
where R is the gas constant. R ‘
‘ Substltutmg the expansions (6) to (10) in (35) we get

—a —a
T(o)f3 0

(0) 3 = ‘4 ‘ ) .
| gé ( T(O) T 0,4) . (36)

at
(1) © ) - | - ;
at PO at P

[T‘""i {(oc——l) e +(ﬁ o« -+ 1) 7y T(c) j 0'4{(“—‘1) X

= —0 Rl—a "P(O)“

pa) T . o
x Iyt e—a—n g | @
From (36) and (4), we obtain; ‘ R o
T® . ge—1 a 4 , .
BTV [ ot — 5 1 ] @)

>
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where - . E:RL Sw=p—at 1,
=00
By the transformation z = ot » we'get
| %zt"' = —F (1 —) po ! [0 — X 231] (39
where .. " o 8 = B—a

1—a ~ a— B
Wetakea = 1and 8 = 9 then 3, = } and (39) integrates to

IO +—9-.m (€ —A TO )

= T2<o> (t*) + —~——-ln{ Q¢ —X T2‘°) | (t*)} )‘1 (t — %) ('40)

/

A . VR . .
L =g << 1, where & is the ratio of temperature at the piston

orot )
to that at the shock Tz(“) (t*) we, expand the logarithmic termsin (40) and obtain

S_CE___)_(t—t*) 7,0° () ] ® o w

Since

7%= 1,% ) [ 1+

We note that after cancelling certain terms the constant ¢’ becomes a common factor on

both sides of (41) and cancels out. We have retained terms up to T, In order that
the expression within the bracket on the right hand side of (41) may be a function of p
alone the similarity- condmon (21) must be satisfied and under this condltlon we get

. 2z )
70, 7 (t,7) o G—al T (j——w)(n+1>‘ —Ls
r (Au') = Ta(o)_i?)—— = : ) 1 "L‘ P 7 _"1
\ ' I ‘ | ‘ll : ‘
G—o)(n L+ 1) —1/8 . L .
_ [(1-r),t" w) (n + 1) +r] IR 49)

where I' is given by (24) with.8 = 9.

-

. We assume the tempéra’i,:u;e at the piston to be & fi‘action of that at the shock so that

O=¥100 ey

where &' is a constant less than 1. Substltutmg (43) in (37) and puﬁtmg e=18=9and
e(l) = ¢y TV, we get

T(l) (0)8 - 0)8 1) p(ﬂ) ’ gp(o) 7 .\
+ ik ~~ ky Ty (t) T = poR gt 4y




A | ,‘ & o 90 s 5"6,'8'4"‘ p
s
- Integrating (44), we get ' D
w0 T )
T W= | o
' —_
= 4-?1)-#m(1f"”:[(1 —T) pm + P] X
| | ' : 2,\ 4 1 2, m)
xpﬂmejﬁfmﬂwﬂﬂ Mt
- All ;—Q(M+1) f cl' TR Dl : - ]
: 1—"e o
Where - *411:'—]2_,;)"-_;’ e i
B]l—_ j*"‘w ,,'F' kw&y . ; S

,——¢u—m{—wﬁ}

*a:uama+mwm

"’E -———-—k[’ 0 1;:11’
, )\«‘— L\ 2‘%’(“-!-1)’ }
*277?{ G+DE §
R { 2:0,2(n+1)= }
| AT\ T o FDE.

When we take m = 1 A=14%,by the transtrmatlon z = (1 + 8 p.)i 45 reduces te

.!' i

79 ()= 2W+’u+awm”“x

- 4, L
X[Az—’——sf(?‘*‘ ) g+2 'Hl""z)*{““' = mx

Xtan 1 = 1) (1__zz)}} + (bh 1)‘1“"n f(b2 l)(l-—z’)};}](m)

where - (146} « <zl
L =C,—Fk4y, -
M =D, +EB +4,0+k— "’Bu' . ;
N={ L+ k) By, VT o -

\"f
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s (]+k)o+k : .
, na L+M+Ny
e 4 (bz __1) ’
~ 5{45= pA1+AQM44A-+Agb—NJ
Vf 2*L+M+N ' \
3e'=7:——§—(§"_——1)—',
g LB MBLN
e a3 ey g AT
\ L+ MBr+N
vAV=2ba+wa—4y’
: A 4, + 4,, -
=A1,—"A2

| Cf 1=\, A T2+ 0
n=&{1+a+wl N;{LHH@ﬂXf
e (1 -+ 6 L f 1o
X {1-+<1+'0)*} 4 {‘1—(1+0>*} ,

4, BV =1 4 (140
s e 7 et e e T )

B=8]

RESULTS AND DISCUSSION
The zeroth order temperature distribution behind the shock, for-the plane, cylindrical

and spherical pistonsfora =1, = 7 8or9is glven by (22) For the radlatlon parameter
Ir>1, the expression

[ (1 — I’),p-ll(j*—iw) (» 1) + I‘:l

increases as p varies from 1 to 0. 7* decreases as we proceed from the shock to piston.
This means that for larger radiation effects the temperature falls off more rapidly towards
the piston. . When 0 < I' < 1, the temperature mcreases towards the plston ‘When the
gas is non-radl,atmg, I'=0and ~ 4 .

FW; —ue—mm+nm~n

Smce ﬁ > 1 J>w s >—1, T(o) tends to mﬁmty as p->0. In this case the maXimum
temperature region is near the piston. When I' = 1, T(o) = 1, thatis, the temperature
is constant behind the shock wave.

v Numerical results show that ‘T® contributes mgmﬁeantly for smaller values. of I
and’ ‘the cohtrlbutlon is more near the piston. When I' is sma.ll as also pointed earlier by
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Wang, the solution does not give good results.” Wehave shown temperature d.lstnbutlon
behind the shock in Fig. 1 and 2 for the plane and spherical pistons. ‘For I' >> 1 the
temperature monotonically increases from the piston to the shock:

When the temperature at the piston is non-zero, (42) shows that the zeroth order
solution is the same is for the cool piston but the first order solution is different.The nature
of the temperature distribution in this case is the same as when the piston is ecol except that

. now it decreases more rapidly towards the piston. The density is given by (25). The effect
of radiation parameter on the density is opposme to that on the temperature. That is, for
large values of radiation parameter, the density increases more rapidly towards the piston.
The numerical results, obtained by Helliwell®, show the same trend. We remark that the
numerical results obtained by Helliwell® for the spherical piston problem with radiation
show that in certain cases the optically thin approximation gives nearly the same results as
obtained for the case of general opacity, for example, when & == 1 and g = 5, (Fig. 3 of
Helhwell") As I' increases the integrand of (33) decreases and thus the eﬂ'ect of larger
radiation is to decrease the distance between the. shook and pistor. :

OPTICALLY THIGK MEDIUM

Now we consider the case when the medium is optically thick. Bemdes (1) and (2)
the equations of contmuxty and momentum, the energy equatlon is glven by

2 iy oF® =1 F®
- - ‘ o '
where F'E i the net radiative flux. Other ba,sic equations are - 7
’ ' (J" e ‘ .
B = — T, ‘ (48)
> 47 dB
E = p*T#, (50)

Flg l-—Tempemture distribution behind the shoock

wave, thin case, j=3

L w= 37/15 2. w =315
['=1508219 I = 50-8219

3. w=37/16 4 o= 29/15
p = 508-319 - D = 808219

© B w = 2915 . 8. _w-==20/15

- P=808 LI =508

7. C'£0 8 OF(Q

‘o = 20/16 w = 915
[ =508 =008,
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" From (1), (B), (48) to (50), Wb obtain -

Foo B e Zi?r'ﬂ;x?‘"j?-f‘f%-‘f e

Aftér substitut’ing the value of FR in (47) and using (4), we obtain for « = 1

PR TN P o . . 2 — s T .
o X ( B_IL) +,___(_'_7_____1l_ 3*2\1{3 B LI (52)
e o Nem P o _
Substituting the expansions {6) to (9) in'(52), we obtain RS VI
319 180 o) pop—p| PTC - @—m(g@ﬂY].
R A A v 2 (53)\
By the transformation ¢ = ¢™+1, (53) reduces to the general form of dlffu%lon equation
et [ ( ol aT“”)] |
- =0 T § N (54
T R N TR i %)
where S l~3——ﬂ,m_2(]-—1)(n+1),
' ‘ ' ' 20i—1)
6, — 160 ¢;

-3kycy (m -+ 1)

We assume a smmlanty form for the temperature

O =Lafw . (55)
. S ' 2ec?(n+ 1) ‘ k
where L= ¢ (0 + 1)
\ © Rr+1)
S g ' . . .
12 Fig. 2—Temper&ture dlstrlbutlon behind the
.. shook wave, thin case, jr==l -
Vo] L w=0 - 5 w=T715
} =0 : ['= 5.08219
™ o - .
2 w=0 . . 6. w="1715
i 7= 5.08219 ) . ['= 508219
044 ' o
3, w=0 7. «w="715
[ = 50.8219 [ = 508.219
3 “\""o =
4. w=0

[ = 508-219

, ; :}“
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and X 18 sonde, aopsta,nt The boundary condltwns at the plston a.nd the‘shoek in tert

the function fare ,
) =8
- =1
The bou.ndary cond1t10n,s (56) reqmre L oo s
- 2n
; A= - +l

The similarity condition for the optlcally t}uck ;nedmm is
T a@g—4 1 -
ST im¥D

= Under this condition (54) reduces to o o
e .
gt = (if—) o g +bf—0

 where : a—(g——-w) (n+1)6 b—-2n6
g 30t 1)2E—3) ( 2¢ )ﬁ~—3 klﬁzﬁi ﬂ ‘
T 8D —wf \yFT ="}
ol ” + 1 :
In an atmosphere with temperature varymg from 20,000° to 2 OO OOO° K the value of
Bis 3 and (59) reduces to o » ,.
B f f‘

R

e

S

6y

o o2 04 o

,'Jo'.ra 10 , ’

° 02 o4 O6 OB, 10
e AL — . : JJ- -
F:g 3—Temperature dlstnbutlon behind Fig.4—Temperature distribution behind t.he :
#&he shock wave, thick case, j=1. ’ shock wave, thick case, j=3. L
L w=0, -~ =10 : L w=0, =10 ’
2. w=0-4, 0==10 . BRERRS w=0, 0«50
8. wmm0:4, O=50 L . .8 w==9'6, 9==10

4 0=06, 6=50
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We assﬁme [ (p) = u (2) wherez = —-— a pﬁ and then from (61) we obtain,
' Cdw  du '
2 A + (8. —2) e Vz =0 . » (62)
1 . b ;

The boundary conditions for w (z) é,fe'

cufz) =1}
.u(0)=8}

The solution of (63) is obtained in terms of confluent hypargec;metric function as '
o ~u'(z),=clylF1[V,S,b]+‘0231—81F1 [1+V—-—S,2——S,z]y (64)

where ¢; and are ¢, are arbitrary constants and - :

& [vss] =D as, @)
' 0

V@+1)..... e (VA E—1) 6

Y= EFD o STE-DEC (66)

Using the boundary conditions (63) we obtain, ' ‘

/ ‘ {lglel[Z:S’z@]} . ) .

W8 11V —8,2—8, * 60

x2S F[14+V—8,2-8,7 ‘

i we take cool piston so that =0, the temperature 7% is given by

I ui= (--"‘—)l_s A4V 8,25, 2] o

7 P O4V—5,2=8,7%] (68)
RESULTS AND DISCUSSION \

We have given numerical results in Fig. 3 and 4 for pl i i

¢ ig. plane and spherical pistons:

¥s€fclt;vfely bcl;gn for t}]lze homogeneous and inhomogeneous media. We hapve ul;:d S%:tg} :
able'? for confluent hypergeometric function for smaller values of d ;

have used the asymptotic expansion @ and for ? > 10we

(63)

4. =

@) =8, [V, 84+

8

S—1! . 8
Fi1 [V, 82] ~ (S(—-V——)-l)! (—-z)V{l—— l’_%_ﬁ)__l_

2122 .
=1t  v-g L—V)(S—V
; +‘(.—V'~;—15—!-62 \ {l+ z( ) +} (69)
o Since in our case z is always negative, we use the transformation

F1(V, 8, —2) =¢* F [S—V,8, z] (70)
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Our numenm! results show that in case of plane plston the temperature behmd the shock
rises t0 & maximum and then falls off towards the piston. In case of spherical piston, when
the medium is homogeneous, the naturé of temperature distribution is the same as in the
plane piston but when the medium is inhomogeneous the- ‘temperature behind the shock
falls monotomcally towards the piston. Since S=} there is no singularity at the piston.
2=01n the solution (56). Asin the thin case the dlsta,nce between shock and piston decreases
due to larger radiation effect. When the medium ahead of the shock is homogeneous
the effect of increase of opacity behind the shock is to reduce the temperature hump- be- -
hind the shock so that the flow behind the shock becomes isothermal for large opacity2.
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