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" Abstract; A numerlcal solution-has been obtained for transient thermal d1stributlon in
a slab in which chemleal electrical or- nuélear: enersy is converted into thermal energy.

~An implicit- schtede is used to set-up the finite diffzronce analog of the d:ﬂ'm:on equa—
tion and the accompanying initiat and boundaty conditlons -
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| Intmducﬁo’n . o

 Transient thermal dlstnbutlon studlesare very. important in atmosphenc, -earth, blo—-
. logical, geo- ﬂuld-dynamm and - technologlcal sciences. Structural technplogy relies
heavily on .thermal diffusion studies in material selection for re-entry sl‘uelds chemical

- and thermal reactor components, combusﬂon dewces, gun barrels etc. " Because of its - :

" great-applicability, it has drawn the attentlon of mdny  researcherst-4,

. This investigation : deals with ' the study of thermal diffusion i ma slab with heat N

generation, which models the heatirig of a slab by the passage ‘of a- ‘current. Carslaw
and Jaeger® have camed out this study but the solutionis in terns of a'series expansmn
which hold for small time only. - An attempt has been made to trace the evolution of
the steady state tempzrature distribution. The’ response of the evolution of the tem-
perature distribution to the vanauons of heat S0Urces and materml propernes has also
been worked out. -

The diffusion equatxon with the forcmg term provxded by the hcat generatmn and the
accompanying initial and boundary conditions are expressed as a set of finite difference -
equations through Crank & Nicholson® implicit scheme which in turn are solved by using. -
Thomas” algorithm. The computer algorithm developed for the solution of this prob--
lem can' cater : for dlﬁ'erent riumber of nodal points. The size of the time: interval is -
stepped up as -the solution approaches towards steady state. * As the finite difference
equations are set up with the help of Crank-Nicholson implicit scheme, which is second
order correct, a small number. of nodal points gwes results that are correct upto tl:urd'
decimal place

2. Formnlation-of the Pi’ob!e’m

Let a slab extendmg from X = 0 to x = | bc mamtamed at temperaturcs 0 and w, at

"both the ends with constant rate of heat generation within it .because of dielectric -

heating. If the heat is supposed to be produced at a constant rate A4 per unit time
per umt volume; the énergy equation mod.,llmg the physml system becomes o

FF_ 13T _ A R
ax3. a at - K ' : ' ' o (1)

' where T, t,a, A and K are temperature, time; diffusivity, thermal heat generation per. .
unit {ime per unit volume and thermal conductivity- respectwely
The initial and boundary conditions are

T-—Ofo:alleor_t_éO ' | .(2)-
T=0atx=0fort=2>0 N )
T=watx=Ifort>0 ' - ) T @)

Making use of the transformation

_T=_(..2K. ?_?+w_ e | | (5)
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Eqn (1) and the assocmted mztlal and boundary condmons transform to the t‘ollowmg |

' equatlons

"a'w 1 ‘c‘iw -

2y e S

W= ﬂ{——h;—forallxandt 0
w'=;‘;’ forx._Oandt>o
w_..-woforx"landt>0

Equatlons (6)—(9) through the transformaheus

X W at
X=H u..;oﬁand =5

transform 1o the nondrmensronal form

W 3W _
) G PR .
: W—«p(I—X’)forallXand«rmo_
where . | o '
T AP -
- PEmE
VW—:_—'*%pforX 0andv>0

-,_,_blforX—-land-r>0

-

1)
8
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- (12)
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The ﬁmte dtﬂ'erenee analogue of the energy equatlon ( 11} and the accompanying
mxt:al ‘and boundary condmons (12)—(14), ‘solution of the -set of the difference
equations and dlscussmn of the numerncal results are contained in’ the subsequent

secnons

3. Solution of the Problém -

The- finite difference: equations are set up by spacing the nodal points in such a way. "
that the value of the mdependcnt vanable at drﬁ'erent nodal poxnts is: given by

Xr—-—l[},X

_where AX = }!,"" n bemg the number of mtcrvals in whlch the region Oto 1is

dmded.



14Gf ' I J Marwah & M G Chopra

Usmg Crank-tholsons imphclt scheme and denoting the nondlmensmnal tem-
perature at'the ith. nodak pomt and- mlh nme step by W«,m, the ﬁmte dili‘erenga
: amlogue of Eqn (11) is .

w‘—l’“‘+1 (2 + b) W"“H-l + W‘+1s'ﬂ+1 ""_ - Wt;1,m i ‘
St (2 — b) Wi,..‘ = Wigm

257 -
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Figure 1, ‘Steady siatg-tenipbitatufe forldii.’fgre_ﬂt rates ofheat generation.
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Flgure 2 Tl:e eﬁ'ect of thermal coﬂductmty on the temperature dxstnbutmn
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where . ‘
b= HAXT 2(’3") for2&ign—2

o

This gives a set of n — 3 equatlons for n — 1 nodal points. - The set of equations can,
‘however, be made complete by using the boundary condltlons (13) and (14) which give
the fqllowmg finite difference equations :

hanel (2 + b) Wl"'H-l + Wg,m+1 (2 - b) Wj,m - Wn,m f . (16)

Wﬂ—‘-’mﬂ (2 +b) Wn—bmn = — Waam + (2 — b) Waym — 2 (17)

It may be observed that the right hand sides of Eqns. (15)-(17) are known through
Eqn. (12);  Thus these n — 1 linear algebraic equations form a tri-diagonal system,
which can be convsniently analysed by Thomas’ algorithm. The computer algorithm
that has been developed can cater for different step sizes. The size of the time

interval has been ‘stepped up as the solution marches towards steady state. In the

_m :
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Figure 3. Companson of temperature d:stnbut:on in alummlum and copper for
d:ﬂ‘erent times. :
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Figure 4. Time required to reach steady state vs rate of heat generation. -
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present computatmn the value of n 1s taken as 20 whmh gwes results correct upto tl:urd

decimal place: , , . .
Numerical results and response of the thermal dlstnbuhon to various. phySlcaI

parameters are discussed in the sectlon 4. S

A fow rcpresentat:ve curves have been- depxcted but the computntlon fm: complete‘ .

'spectrum of values of physical parameters can be: carried -out. using the algonthm

developed. . . . :

Flﬁt_ue S. Time history of -t;empe_:x"ature in the slab without heat sources.
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Figure 6. “Time history of"tempefature with h_eit source p.= 0.5.
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4, Results and Dlscussion

Figure 1 deplcts that the steady state temperature increases with the increase in the
tate heat of generation, The temperature profile is linear when there is no heat
_ generation, - which agrees with the steady state solution of the energy -equation
without heat sources and this adds to the confidence in the computations carried out
in this paper,

The steady state temperature dlstnbutlon in the slabs of dlfferent therma! conducti-
vities is shown in Fig 2. Increase in the temperature levels with the decrease in the
. thermal conductw:ty is in keeping with the physical behaviour exhibited by Fig 1, because

decrease in the value of the thermal conductivity results in increase in the value of p.

The' temperature distribution in aluminium and copper slabs for two typical ins-
tants of time when the heat generation is specified by p = 0.5. is depicted in Fig. 3.

Fig. 4 exhibits that the time required for the evolution of steady state tempetature
distribution in a slab increases with the increase in the rate of heat generatior. The
detailed evolution of - temperature distribution with and without heat sources respec-
tively is explained in Figs. 5 and 6. These figures show that the time required to achieve

steady state is hlgher when heat is generated within it whlch is also supported by
Fig. 4
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