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Transient Heat T r in a Slab with &it Generation 
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Almtnct. A numerical solution has bccn obtained for transient thermal distribution in 
a slab in which chemical, olcstrieal or nuclosr energy is converted into thermal energy. 
An implicit scheme is used to sat up the finite differonce analog of the diffusion equa- 
tion and tho accompanying initial and boundary conditioas. 

Nomeadatare 

a Thermal diffusivity 

b = 2 ( A x ) a / A ~  

A Heat generation p a  unit time per unit volume 

K thermal conductivity 

I length of the slab 

n number of nodal points 

p Heat source parameter (AI"IZw,K) 

T Temperature within the slab 

t time 

w, temperature at x = I 

W Nondimensional temperature 

Wd,, Nondimemional temperature (wlw,,) at ith nodal point and mth 
time step. 

x ooordinate along the length of the slab 

X NondimensionaI length (XI/) 
r Nondiiensionai time (Fourier number) 
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1. Introduction 

Transient thermal distribution studies arc very important _iq atmospheric, earth, bio- 
logical, geo-fluid-dynamic and technological sciences. Structural tcch~wlogy reliw 
heavily on thermal diEusion studies in material sektion for *entry shield$, chemical 
and thermal reactor components, combustion devices, gun barrels etc. Because of its 
great applicability, it has drawn the attention of many rssearoherr'-'. 

This investigation deals with the study* of thermal diffusion in a slab with heat 
generation, which models the heating of a slab by the passage of a current. Carslaw 
and Jae& have carried out this study but the solutionis in terms of a'series expansion 
which hold for small time only. An attempt has been made to trace the evolution of 
the steady state tempxaWe distribution. The response of the evolution of the tem- 
perature distributiou to the variations of heat dources and material properties has also 
been worked out. 

The diffusion equation withthe forcing term provided by the heatgenerationand the 
accompanying initial and boundary conditions are expressed as a set of finite difference 
equations throbghCrank& Nicholsone implicit scheme which in turn are solved by using 
Thomas7 algorithm. The computer algorithm developed for the solution of this prob- 
lem can cater for diierent number of nodal points. The size of the time interval is 
stepped up as the solution approaahes towards steady state. As the 5nite difference 
equations are set t ~ p  with the help of Crank-Nicholson implicit scheme, which is second 
order correct, a small n m k  of nodal points gives msults that are correct upto third 
decimal place. 

2. Formulation of the ProbIem 

Let a slab extending from x = 0 to x = I be maintained at temperatures 0 m d  w, at 
both the ends with constant rate of heat generation within it because of dielectric . 
heating. If the heat is supposed to be produced at  a constant rate A per unit time 
per unit volume, the knergy equation modslling the physical system becomes 

a 1 a r -  A - - - - - - - 
ax* a at K 

where T, t, a, A and K are temperature, time, diffusivity, thermal heat generation per 
unit time per unit volume and thermal conductivity respcotively. 

The initial and boundary conditions are 

T = 0 for all x for t - 0 (2) 
T = O a t x - O f o t t =  > O  (3) 
T =  w,atx = Ifor t>O  (4) 

Making use of the transformation 
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Eqn. (1) and the associated initial and boundary condition 
equations : 

ayw I aw = 
aT'-  T G 

w = -  '(Ia - *' for all x and t =O zK (7) 

w = -  A" - f o rx=Oand  t > O  
2K (8) 

w = w , f o r x - - I a n d t > O  (9) 

Equations 16)-(9) through the transformations 

x w at X = - ,  W = - a d  . r = -  I '"0 1' (10) 

transform to the nondimensional form 

aw aw 
-5 -  a x ,  a7 (11) 

W = - p(l - Xa) for all X and T - 0 (12) 
where 

1 W =  - -p fo rX=Oandr>O 2 (13) 

W = l f o r X =  l a n d . r > O  ((14) 
The finite difference analogue of the energy equation (1 1) and the accompanying 

initial and boundary conditions (12)-(14), solution of the set of thc difference 
equations and discussion of the numerical results ate contained in the subsequent 
sections. 

3. Solution of the Problem 

The finite difference equations are set up by spacing the nodal points in such a way 
that the value of the independent variable at diierent nodal points is given by 

Xc = i a X  

1 where AX = -, n being the number of intervals in which the region 0 to 1 is n 
divided. 
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b = 2("x)' for 2 < i < n - 2 
AT *. - 

This gives a set of n - 3 equations for n - 1 nodal points. The set of equations can, 
however, be made complete by using the boundary conditions (13) and (14) which give 
the follewing finite difference equations : 

- (2 -I- b) Wl,m+l + W%,m+, = (2 - b) W1,m - W2,n (16) 

It may be observed that the right hand sides of Eqns. (15)-(17) are known through 
Eqn. (12). Thus these n - 1 linear algebraic equations form a tri-diagonal system, 
which can be wnvgniently analysed by Thomas' algorithm. The computer algorithm 
that has been developed can cakr for different step sizes. The size of the time 
interval has been stepped up as the solution marches towards steady state. In the 

Figure 3. Comparison of ternmature distribution 
different times. 

in aluminium and copper 

Pigure 4. Time required to roach steady state vs rate of heat generation. 
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present computation the value of n is taken as 20 whish gives results correct upto third 
decimal place. 

Numerical results and response of the thermal distriBlltion to various physical 
parametern are discussed in the section (4). 

A fcw representative curves have been depicted but the computation for complete 
spwtrnm of values of physical parameters can be carried out using the algorithm 
developed. 

Flmm 6. Thw history of tsmpaanva with heat source p = 0.1. 
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4. Results and Discassion 

Figure 1 depicts that the steady state temperature increases with the increase in the 
rate heat of generation. The temperature profile is line& when there is no heat 
generation, which agrees with the steady state solution of the energy equation 
without h a t  sources and this adds to the confidence in the computations carried out 
in this paper. 

The steady state temperature distribution in the slabs of different thermal conducti- 
vities is shown in Fig 2. Increase in the temperature levels with the decrease in the 
thermal conductivity is in keeping with the physical behaviow exhibited by Fig 1, because 
deerease in the value of the thermal conductivity results in increase in the value of p. 

The temperature distribution in aluminium and copper slabs for two typical ins- 
tants of time when the heat generation is specified by p = 0.5. is depicted in Fig. 3. 

Fig. 4 exhibits that the time required for the evolution of steady state temperature 
distribution in a slab increases with the increase in the rate of heat generation. The 
detailed evolution of temperature distribution with and without beat sources respec- 
tively is explained in Figs. 5 and 6. Tkese figures show that the time required to achieve 
steady state is higher when heat is generated within it which is also supported by 
Fig. 4. 

The authors would like to thank Dr. V. B. Tawakley, Dr. S. P. Agganval and Dr. 
Y. K. Metha for many stimulating discussions. Thanks are also due to Dr. A. K. 
Sreedhar, Director, Defence Science Centre, Delhi for his kind interest and permission 
to publish this work. 
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