A. D. Wadhwa

Kurukshetra University, Kurukshetra

(Received 22 April 1970; revised 3 November 1970)

Some integrals involving Kampé de Fériet function have been evaluated. These integrals have further been employed to obtain some Fourier series for Kampé de Fériet functions. Some particular cases have also been discussed.

For the sake of brevity and simplicity Kampé de Feriet function ${ }^{1}$ is represented as

$$
\boldsymbol{F}_{i: j ; J}^{g: h ; H}\left[\begin{array}{l}
a_{g}: b_{h} ; B_{H} ; \tag{1}\\
\alpha_{i}: c_{j} ; C_{J} ;
\end{array}\right]=\sum_{p=0}^{\infty} \sum_{q=0}^{\infty} \frac{\Pi\left(a_{g}\right)_{p}+q \Pi\left(b_{h}\right)_{p} \Pi\left(B_{H}\right)_{q} x^{p} y^{q}}{\Pi\left(\alpha_{i}\right)_{p}+q \Pi\left(c_{j}\right)_{p} \Pi\left(C_{J}\right)_{q} p!q!}
$$

where μ_{i} denotes the set of parameters $\mu_{1}, \ldots, \mu_{i} . \Pi\left(\mu_{i}\right)_{s}$ denotes the product $\left(\mu_{1}\right)_{s} \ldots$ $\ldots\left(\mu_{i}\right)_{s},(\mu)_{s}$ denotes $\sqrt{(\mu+s)} / \bar{s}$. Colon (;) and semicolon (;) separate the terms of the form $\left(\alpha_{i}\right)_{p+q}$ and $\left(C_{J}\right) \ldots\left(c_{j}\right)_{\Gamma},\left(C_{J}\right)_{q}$ etc. In what follows the symbol $\Delta(\delta, \alpha)$ represents the set of parameters $a / \delta, \ldots .,(\alpha+1) / \delta, \ldots,(\alpha+\delta-1) / \delta$ where δ is a positive integer.

Ragab ${ }^{2}$ has shown that the series on the right of (1) converges for all finite x, y if $g+h \leqslant i+j, g+H \leqslant i+J$, converges for $|x|+|y|<\min \left(1,2^{i-g+1}\right)$ if $g+h=i+j+1, g+H=i+J+1$. It can easily be shown that the series converges if

$$
g+h=i+j+1, \quad g+H=i+J+1
$$

and

$$
|x| \leqslant 1, \quad|y|<1, \quad \operatorname{Re}(X)>0
$$

or

$$
|x|<1, \quad|y| \leqslant 1, \quad \operatorname{Re}(Y)>0
$$

$$
|x| \leqslant 1, \quad|y| \leqslant 1, \quad \operatorname{Re}(X)>0, \operatorname{Re}(Y)>0
$$

whare

$$
\begin{aligned}
& X=\Sigma \alpha_{i}+\Sigma c_{i}-\Sigma a_{g}-\Sigma b_{h} \\
& Y=\Sigma a_{i}+\Sigma c_{J}-\Sigma a_{g}-\Sigma B_{H}
\end{aligned}
$$

Following formulae will be required in the proofs:
(a) If δ is a positive integer then

$$
\begin{equation*}
\Gamma(\alpha+\delta n)=\Gamma(\alpha) \delta^{\delta n} \prod_{i=0}^{\delta-1}\left(\frac{\alpha+i}{\delta}\right)_{n} \tag{2}
\end{equation*}
$$

(b) The integrals ${ }^{3}, 4$

$$
\begin{align*}
& \int_{0}(\sin t)^{\rho} \cos u t d t=\frac{\pi \Gamma(1+\rho) \cos \frac{\pi u}{2}}{2^{\rho} \Gamma\left(1+\frac{\rho+u}{2}\right) \Gamma\left(1+\frac{\rho-u}{2}\right)}=A(u) \text { (say), } \tag{3}\\
& \int_{0}^{\pi}(\sin t)^{\rho} \sin u t d t=\frac{\pi \Gamma(1+\rho) \sin \frac{\pi u}{2}}{2^{\rho} \Gamma\left(1+\frac{\rho+u}{2}\right) \Gamma\left(1+\frac{\rho-u}{2}\right)}=B(u)(\text { say }) \tag{4}
\end{align*}
$$

$\int_{0}^{\pi}(\cos t)^{\rho} \cos u t d t=\frac{\pi \Gamma(1+\rho)}{2^{\rho} \Gamma\left(1+\frac{\rho+u}{2}\right) \Gamma\left(1+\frac{\rho-u}{2}\right)}=C(u)$ (say);
$R e(\rho)>0$.

THETNTEGRALS
The integrals to be established are:
$\int_{0}^{\pi}(\sin t)^{\rho} \cos u t \vec{i}_{i: j ; J}^{g: h ; H}\left[\begin{array}{l}a_{g}: b_{h} ; B_{H} ; \\ \alpha_{i}: c_{j} ; O_{J} ;\end{array} \quad x\left(\sin t t^{28}, y(\sin t)^{28}\right] d t=A(u) F(u)(6)\right.$
$\int_{0}^{\pi}(\sin t)^{\rho} \cos u t{ }^{q: h ; H}\left[\begin{array}{l}a_{g}: b_{h} ; B_{H} ; \\ i: j ; J(\sin t)^{2 \delta}, y\end{array}\right] d t=A(u) F_{1}(u)$
$\int_{0}^{\pi}(\sin t)^{\rho} \cos u t F^{a: h ; H}\left[\begin{array}{l}a_{\theta}: b_{i} ; B_{H} ; \\ \alpha_{i}: c_{j} ; C_{J} ;\end{array}\right], y(\sin t)^{28} \quad\left[d=A(u) F_{2}(u)\right.$

$$
\begin{align*}
& \int_{0}^{\pi}(\sin t)^{\rho} \sin a t F_{i: j ; J}^{g: h ; H}\left[\begin{array}{l}
a_{g}: b_{k} ; B_{H} ; \\
\alpha_{i}: c_{j} ; C_{J} ;
\end{array} x(\sin t)^{2 \delta}, y(\sin t)^{2 \delta}\right] d t=\mathrm{B}(u) F(u) \tag{9}\\
& \int_{0}^{\pi}(\sin t)^{\rho} \sin u t F^{g: h ; H}\left[\begin{array}{l}
a_{j}: b_{h} ; B_{H} ; \\
\alpha_{i}: c_{j} ; C_{J} ;
\end{array} \quad x(\sin t)^{2 \delta}, y \quad\right] d t=B(u) F_{1}(u) \\
& \int_{0}^{\pi}(\sin t)^{\rho} \sin u t \boldsymbol{F}^{a}{ }_{i: h ; \boldsymbol{H}}\left[\begin{array}{l}
a_{g}: b_{h} ; B_{H} ; \\
\alpha_{i}: c_{j} ; C_{J} ; x, y(\sin t)^{28}
\end{array}\right] d t=B(u) F_{\mathbf{2}}(u) \\
& \int_{0}^{\pi}(\cos t)^{\rho} \cos u t{ }_{i: j ; J}^{g: h ; H}\left[\begin{array}{l}
a_{j} ; b_{h} ; B_{H} ; \\
\alpha_{i}: \sigma_{j} ; C_{J} ;
\end{array} x(\cos t)^{2 \delta}, y(\cos t)^{2 \delta}\right] d t-C(u) F(u) \tag{12}\\
& \int_{0}^{\pi}(\cos t)^{\rho} \cos u t{ }_{F}^{g}: h ; H_{i} ;{ }^{\pi}\left[\begin{array}{l}
a_{g}: b_{h} ; B_{H} ; \\
\alpha_{i}: c_{j} ; C_{J} ;
\end{array} x(\cos t)^{2 \delta}, y \quad\right] d t=C(u) F_{1}(u) \tag{13}\\
& \int_{0}^{\pi}(\cos t)^{\rho} \cos u t F_{i: j ; J}^{g: h ; H}\left[\begin{array}{l}
a_{g}: b_{h} ; B_{H} ; \\
\alpha_{i}: c_{j} ; C_{J} ;
\end{array}, y(\cos t)^{2 \delta} \quad\left[d t=C(u) F_{2}(u)\right.\right. \tag{14}
\end{align*}
$$

where the parameters etc. of the Kampé de Fériet functions are so restricted that they converge. $A(u), B(u)$ and $C(u)$ have respectively been defined in (3) to (5) and
$\left.F(u)=\begin{array}{r}g+2 \delta: h ; H \\ i+2 \delta: j ; J\end{array}\left[\begin{array}{l}a_{g}, \Delta(2 \delta, 1+\rho): b_{h} ; B_{H} ; \\ \alpha_{i}, \Delta\left(\delta, 1+\frac{\rho+u}{2}\right), \Delta\left(\delta, 1+\frac{\rho-u}{2}\right) ; c_{j} ; \sigma_{j} ;\end{array}\right], y\right]$
$F_{1}(u)=F^{g: h+2 \delta ; H} \begin{aligned} & a ; j+2 \delta ; J\end{aligned}\left[\begin{array}{l}a_{g}: b_{h}, \Delta(2 \delta, 1+\rho) ; B_{H} \\ \alpha_{i}: c_{j}, \Delta\left(\delta, 1+\frac{\rho+u}{2}\right), \Delta\left(\delta, 1+\frac{\rho-u}{2}\right) ; O_{J} ; x, y\end{array}\right]$
$F_{2}(u)=F_{i}: h ; H+2 \delta \quad\left[\begin{array}{l}a_{g}: b_{h} ; B_{H}, \Delta(2 \delta, 1+\rho) ; \\ \alpha_{i}: c_{j} ; C_{J}, \Delta\left(\delta, 1+\frac{\rho+u}{2}\right), \Delta\left(\delta, 1+\frac{\rho-u}{2}\right) ; x, y\end{array}\right]$

Proof:-To establish (6), expressing the Kampé de Fériet function in the integrand as in (1) and interchanging the order of summation and integration which is justrfied ${ }^{5}$, we have

$$
\sum_{p=0}^{\infty} \sum_{q=0}^{\infty} \frac{\Pi\left(a_{q}\right)_{p+q} \Pi\left(b_{h}\right)_{p} \Pi\left(B_{H}\right)_{q} x^{p} y^{q}}{p!q!\Pi\left(\alpha_{i}\right)_{p+q} \Pi\left(c_{j}\right)_{F} \Pi\left(O_{J}\right)_{q}} \int_{0}^{\pi}(\sin t)^{\rho+2 \delta p+2 \delta q} \cos u t d t
$$

Now evaluating the integral with the help of (3) using (1) and (2), we get the right hand side of (6). Formulae (7) and (8) can similarly be proved. The sets of formulae (9) to (14) can be established by using the same procedure with the help of (4) and (5).

Particular Cases

Treating a_{g} and α_{i} as empty parameters, it is seen that the Kampé de Fériet functions of the integrals reduce to the products of the pairs of hypergeometric functions. This enables to have the values of the integrals involving the products of hypergeometric functions. To illustrate, taking (12), which in the absence of parameters a_{g}, α_{i} reduces to the form

$$
\begin{align*}
& \int_{0}^{\pi}(\cos t)^{\rho} \cos u t{ }_{h} F_{j}\left(b_{h} ; c_{j} ; x(\cos t)^{2 \delta}\right){ }_{H} F_{J}\left(B_{H} ; C_{J} ; y(\cos t)^{2 \delta}\right) d t \\
&=C(u) F^{2 \delta: h ; H} \begin{array}{r}
2 \delta: j ; J
\end{array}\left[\begin{array}{l}
\triangle(2 \delta, 1+\rho): b_{h} ; B_{H} \\
\triangle\left(\delta, 1+\frac{\rho+u}{2}\right), \triangle\left(\delta, 1+\frac{\rho-u}{2}\right): c_{j} ; C_{J} ; x, y
\end{array}\right] \tag{76}
\end{align*}
$$

For $\delta=1$, (16) agrees with the result obtained by Sexana \& Vyas ${ }^{6}$.

EXPANSION FORMULAE

The expansion formulae to be obtained are

$$
\begin{align*}
& (\sin t)^{\rho} F^{g: h ; H} \begin{array}{l}
i: j ; J\left[\begin{array}{l}
a_{g}: b_{h} ; B_{H} ; \\
\alpha_{i}: c_{j} ; C_{J} ;
\end{array} \quad x(\sin t)^{2 \delta}, y(\sin t)^{2 \delta}\right. \\
\quad=\frac{1}{\pi} A(0) F(0)+\frac{2}{\pi} \sum_{r=1}^{\infty} A(r) F(r) \cos r t
\end{array} \\
& \quad=\frac{2}{\pi} \sum_{r=0}^{\infty} B(r) F(r) \sin r t \tag{17}
\end{align*}
$$

$$
\begin{align*}
& (\sin t)^{p} \boldsymbol{A}^{g: h ; H}\left[\begin{array}{l}
a_{g}: b_{h} ; B_{H} ; \\
i: j ; J
\end{array} \begin{array}{l}
\alpha_{i}: c_{j} ; C_{J} ;
\end{array},(\sin t)^{26}, y\right] \\
& =\frac{1}{\pi} A(0) F_{1}(0)+\frac{2}{\pi} \sum_{r=1}^{\infty} A(r) F_{1}(r) \cos r t \tag{19}\\
& =\frac{2}{\pi} \sum_{r=0}^{\infty} B(r) H_{1}(r) \sin r t \tag{20}\\
& (\sin t)^{\rho} H^{g: h ; H}\left[\begin{array}{l}
a_{g}: b_{h} ; B_{H} ; \\
a_{i}: c_{j} ; C_{J} ;
\end{array}, y, y(\sin t)^{2 s}\right] \\
& =\frac{1}{\pi} A(0) F_{2}(0)+\frac{2}{\pi} \sum_{r=1}^{\infty} A(r) F_{2}(r) \cos r t \tag{21}\\
& =\frac{2}{\pi} \sum_{r=0}^{\infty} B(r) H_{\mu}(r) \sin r t \tag{22}
\end{align*}
$$

$$
\begin{gather*}
(\cos t)^{\rho}{ }_{F}{ }^{g}: h ; H\left[\begin{array}{l}
a_{g}: b_{h} ; B_{H} ; \\
i: j ; J\left[(\cos t)^{2 \delta}, y(\cos t)^{2 \delta}\right. \\
\alpha_{i}: a_{j} ; C_{J} ;
\end{array}\right] \\
=\frac{1}{\pi} C(0) H(0)+\frac{2}{\pi} \sum_{r=1}^{\infty} C(r) F(r) \cos r t, \tag{23}
\end{gather*}
$$

$$
\begin{gather*}
\left.(\cos t)^{\rho} \vec{F}^{g: h ; H}\left[\begin{array}{l}
a_{g}: b_{h} ; B_{H i} \\
i: j ; J \\
\alpha_{i}: c_{j} ; C_{J} ;
\end{array}\right](\cos t)^{2 \delta}, y\right] \\
=\frac{1}{\pi} C(0) F_{1}(0)+\frac{2}{\pi} \sum_{\gamma=1}^{\infty} O(r) F_{1}(r) \cos r t, \tag{24}
\end{gather*}
$$

$$
\begin{align*}
& (\cos t)^{\rho} r^{g}: \hbar ; H_{i}\left[j ; J\left[\begin{array}{l}
a_{g}: b_{h} ; B_{H} ; \\
\alpha_{i}: c_{j} ; C_{J} ; y(\cos t)^{2 \delta}
\end{array}\right]\right. \\
& =\frac{1}{\pi} C(0) F_{2}(0)+\frac{2}{\pi} \sum_{r=1}^{\infty} C(r) F_{3}(r) \cos r t, \tag{25}
\end{align*}
$$

where the parameters etc. of the Kampe de Fériet functions are so restricted that they converge. $A(r), B(r)$ and $C(r)$ are defined in (2) to (4); $F(r), F_{1}(r)$ and $F_{y}(r)$ have been defined in (15).

Proof:-

$$
\text { Let } \left.\begin{array}{rl}
f(t) & =(\sin t)^{\rho} F_{i: j} g: h ; H
\end{array} \quad \begin{array}{l}
a_{g}: b_{h} ; B_{H} ; \tag{26}\\
\alpha_{i}: c_{j} ; C_{J} ;
\end{array} \quad x(\sin t)^{2 \delta}, y(\sin t)^{2 \delta}\right] .
$$

Equation (26) is valid since $f(t)$ is continuous and of bounded variation in the interval $0 \leqslant t \leqslant \pi$. Multiplying both sides by cos $u t$ and integrating with respect ts t from 0 to π we have

$$
\begin{align*}
& \left.\int_{0}^{\pi}(\sin t)^{\rho} \cos u t\right]_{\imath}^{g: h ; H}{ }_{\imath}\left[\begin{array}{l}
a_{g}: b_{h} ; B_{H} ; \\
\alpha_{i}: c_{j} ; C_{J} ;
\end{array} x(\sin t)^{2 \delta}, y(\sin t)^{2 \delta}\right] d t \\
& =\frac{C_{0}}{2} \int_{0}^{\pi} \cos u t d t+\sum_{r=1}^{\infty} C_{r} \int_{0}^{\infty} \cos r \cos u t d t \tag{27}
\end{align*}
$$

Now using (6) and the orthogonality property of cosine functions, we get

$$
\begin{equation*}
C_{u}=\frac{2}{\pi} A(u) F(u) \tag{28}
\end{equation*}
$$

Formula (17) now follows from (26) and (28).
Fourier series (19), (21) and (23) to (25) can similarly be established.
To prove (18), let

$$
\begin{aligned}
g(t) & =(\sin t)^{\rho} \boldsymbol{F}^{g} \cdot h ; H ; J\left[a_{g}: b_{h} ; B_{H} ; \quad x(\sin t)^{26}, y(\sin t)^{2 \delta}\right] \\
& =a_{j} ; C_{J}, \\
& C_{r=0}^{\infty} \sin r t
\end{aligned}
$$

Equation (29) is valid since $g(t)$ is continuous and of bounded variation in the interval $0 \leqslant t \leqslant \pi$. Multiplying both sides by $\sin u t$ and integrating with respect to t from 0 to π, we have

$$
\left.\begin{array}{l}
\int_{0}^{\pi}(\sin t)^{\rho} \sin u t F^{\prime}: h ; H\left[\begin{array}{l}
\left.a_{g}: b_{h} ; B_{H}\right\} \\
\alpha_{i} ; c_{j} ; C_{B} ;
\end{array} \quad x(\sin t)^{2 \delta}, y(\sin t)^{2 \delta}\right.
\end{array}\right]
$$

Now using the orthogonality property of sine functions and the formula (9), we have

$$
C_{r}=\frac{2}{\pi} B(r) F(r)
$$

From (29) and (30), we get (18)
Pourier series (20) and (22) are similarly obtained.

Particular Cases

In view of the remarks in the particular cases discussed earlier it can be concluded that a Fourier series for the product of hypergeometric functions ean be obtained as particular cases of the formulae (17) to (25). As an example (23), in the absence of the parameters \mathbf{a}_{g} and α_{i}, takes the form

$$
\begin{align*}
& (\cos t)^{\rho} F_{j}\left[b_{h} ; c_{j} ; x(\cos t)^{2 \delta}\right]{ }_{H} F_{J}\left[B_{H} ; C_{J} ; y(\cos t)^{28}\right]=\frac{1}{\pi} C(0) F(0)+ \\
& +\frac{2}{\pi} \sum_{u=0}^{\infty} C(u) F_{2 \delta: j ; J}^{28: h ; H}\left[\begin{array}{l}
\triangle(2 \delta, 1+p): b_{h} ; B_{H} \\
\left.\triangle\left(\delta, 1+\frac{p+u}{2}\right), \triangle\left(\delta, 1+\frac{\rho-u}{2}\right): c_{j} ; C_{J}, y\right]
\end{array}\right. \tag{30}
\end{align*}
$$

which agrees with the earlier result ${ }^{7}$ for $\delta=1$.

AOKNOWLEDGEMENTS

I am highly thankful to Dr. S. D. Bajpai, Ahmadu Bello University, Zaria (Nigeria) for his kind help and guidance during the preparation of this paper.

HEFEAENCE

1. ApFELL, P.\& KAMPúJ., DE FERIET, "Funotions Hypergeonetríqueset Hyperspheriques", (Gauthier-Villars, Paris), 1926.
2. Ragab, F. M., J. Reine Angew. Math., 212 (1963), 113.
3. Bajpai, S. D., Fourier Series for G-functions (communicated).
4. Erbalyy, A., "Higher Transcendental funetiens", Vol. L, (Megraw Hill, New York), 1953, 12 (30).
5. Beomwign, T, J. I. A. 'An introduction to the Theory of Infinite Seriee', (Maenillan, Leqdon, 1055, 496 .
6. Sexana, R. K. \& Vyas, R. C., Vijnana Päishad Anusandhan Patrilk, 11 (1968), 103,

7 Wangwa, A. D., "A Fourier Series for the Product of Hypergeometric Functions" (communicated).

