FLUID ROTATING IN THE PRESENCE OF A MAGNETIC FIELD
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The problem of rotating fluid recently considered by Thornley has been extended to électrically
conducting fluids. It is found that the resonance effect encountered in the non-magnetic case is
eliminated by the presence of a magnetic field,

Thornley? has investigated the flow of a viscous fluid in the semi-infinite region
bounded by a plane when the fluid and the disc rotate like a solid body and additionally the
disc performs non-torsional oscillations in its own plane. Itisghown that oscillatory solution
satisfying all the boundary conditions is impessible for the resonant case, i.e., when the fre-
quency of the disc oscillation is twice the angular velocity of the basic rotation of the fluid.
This particular behaviour has been analysed by treating an initial-value problem in which
the oscillatory motion commences at time ¢ = 0. The purpose of the present note is to
show that in the case of an electrically conducting fluid with the presence of an axial
magnetic field, this resonance effect is completely avoided. The effect of the magnetic
field on the flow due to the impulsive start of the disc is also studied.

BASIC EQUATIONS AND SOLUTIONS BY LAPLACE TRANSFORM.

Consider an infinite disc at z = 0 rotating in unision with the fluid in the region z =0
with an angular velocity 2 about the z-axis. The fluid is assumed to be viscous, incom-
pressible and electrically conducting. The plate, in addition to rotation, performs oscilla-
tions given by ¢= u -+ w == a et ™4b ¢ " in its own plane. Here @ and b are complex
constants while » may be taken to be real. The Navier-Stokes equations with respect
to a set of coordinate system rotating with the fluid are

-> i ‘ > >
: -> -> - - . => % B
%—';— +(©. V) v+ 29X 04V {—f ——%m-@z_‘_yz)}:vvwx J_XP__ (1)

v.?:o , ' 2

~

EJ . N X ->
where v is the velocity, p the pressure, p the density, v the kinematic viscosity,” 7 the current
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density and B the magnetic induction. Under the assumption that the magnetic. Reynold
number By, < < 1, the induced field is neglected. We also assume that the electric field
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E=0. With these assumptions the magnetic field B= (0, 0, Bo) where B, is the applied
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field fixed relatlve to the axes and the ponderomotlve force — j X B = o
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) where u, v are the veloclty components para]lel to the z-, y~axes.

Takmg all dependent variables to be functlons of zand ¢ only, (1) and (2) reduce® to
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Puttmg qg=1u + w, (3) and (4) can be combined as
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The boundary conditi@ns for the initial value problem are
(@) 2=0:¢q=ae"+ be—int
t>0
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Usmg the method of Laplace tra.nsform we can obtain the solutlon of (5) sub;ect _
to (6) in the form
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. Smce the osclllatmy solutions are reached atlarge tlmes, we allow t -> oo and obtam .
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This i the correct ‘solution ‘sa;fisfﬁng b@th the 'bv"ounda'ry conditions ' at -z =0 and-
atinfinity, whereas when . = 0 (non-magnetic case) the condition atinfinity is violsted!
Thornley also points out that the order in which' the two limits namely, ¢ - co * and
n->2 Q, are taken cannot be-interchanged-when z = 0 (v¢ )t} . This diffienlty-
also does not arise in our case since A, never vanishes, : ' '
" Now we discuss the particular case when the disc is impulsi{}ély started in 'itsk,_,“gi:‘;yn':
plane. The solution is directly derived from (7) by putting n = 0 and @ -+ b = ‘¢ (a real
constant,say). Henceweget - - -~ =~ . ok
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where e . \4\l=—_.2«,+p')qr.—“_—’(n‘¢2-+-2i!2)i

To see how t'hé“boundai'y lz;yer on the dise de;re:lops and ﬁnall} settles down to a sﬁeady
Ekman layer we write the solition for small and' large times, Thus for small time ¢ the
expressions for « and v can be writterf as
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and for large time they are
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whero - R=(mt 4 4R

Just at the commencement of motlon a Rayleigh layer unaffected by the magnetic '
field develops on the disc which is représented by the first term of (11)."At large times a °
steady modified Ekman layer is formed whose thickness is of 0(e)
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This thickness decreases as the magnetic field strength increases. The oscillatory
part given by the second term of each (12) and (13) die out w1th time and the increase in
the field.

The tangential force per umt area on the discis given by

LD _ U . v
:P—‘sz—{-'bpgi,j_’ev(azv ’+’3 7 )2-0

| =‘_,r_,e(!;r"—gg)*{e—m F A z)# orf (m L4 )}

and, as¢ - o we have (corresponding to Ekman layers)
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