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The problem of rotating fluidrecently considered by Thornley has been extended to electrically 
conducting fluids. It is found that the resonance effect encountered in the non-magnetic case is 
eliminated by the presence of a magnetic field. 

Thornleyl has investigated the flow of a viscous fluid in the semi-infinite region 
bounded by a plane when the fluid and the disc rotate likc a solid body and additionally the 
disc performs non-torsional oscillations infts own plane. It is &own that oscillatory solution 
satdsfying dl the boundary conditions is impossible for the resomat case, i.e., when the fre- 
quency of the disc oscillation is twice the angular velocity of the basic rotation of the fluid. 
This particular behaviour has been analysed by treating an initial-value problem in which 
the oscillatory motion commences a t  time t = 0. The purpose of the present note is to 
show that in the case of an electrically conducting fluid with the presence of an axial 
magnetic field, this resonance effect is completely avoided. The effe~t of the magnetic 
field on the flow due to the impulsive start of the disc is also studied. 

B A S I C  E Q U A T I O N S  A N D  S O L U T I O N S  B Y  L A P L A C E  T R A N S F O R M  .. 
I 

Consider an infinite disc at  z = 0 rotating in unision with the fluid in the region z = 0 
with an angular velocity Sd about the z-axis. The fluid is assumed to be viscous, incom- 
preesible and electrically conducting. The plate, in addition to rotation, performs oscilla- 
tions given by q = u + iv == a e + int+b e --int in its own plane. Here a and b are complex 
constants while n may be taken to be real. The Navier-Stokes equations with respect 
to a set of coordinate system rotating with the fluid are 

-. + 3 
where v is the velocity, p the pressure, p the density, v the kinematic viscosity,'j the current 
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density and B the magnetic induction. Under the assumption that the magnet i~ Reynold 
number R, < < 1, the induced field is neglected. We also assume that the elect& &la 
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E z  0. With these assumptions the magnetic field B = (0, 0, B,) where Bo is the applied 
.. . . I I . ?  -t 

field fixed re&tive tothiaxes &d the ponderom6tive force - P J x B = 
. - - .  

where u, v are the velocity components parallel to the z-, y-axes. 
P . r *  . ' 

Taking all dependent variables to be functions -. of z and t only, (1) and (2 )  reduce1 to 

32 u u Boa . -.au - , , Q * 2 v  --- . - 
a" 'ec, a t P 

(3 )  

3 V a% v uB,,~ - + 2 B u = v  --- 
3 t  . azs P 

v , . ? (4) 
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Putting q = u + iv, (3 )  and (4) can be combined as .. 

a q  * . . - 8% + 2 i O  q = v  - --mSp, 
a t  3 zs 

(6)  

u Boa 
ma= - where 

- .  P 

The boundary conditions for the iliitial value problem are 

(a) z = 0 : q = a ein" be-int 

( b ) z + a o :  . - (6) - , 
. 7 . . . -  . ., , * \ . _I _. _I - - . . 

(0) q = 0 a t  t = 0 for dl z 
I . " .  '. 

Using the method of Laplace transform we can obtain the solution of (5) subject 
to (6) in the form 

Since thqosci&toq sqlutione v e  reached at brge times, we allow t + 03 and o w i n  . 
. .  . -  - "  \ ,  . - * .  . - 

h z l d - i ; +  be-(Qt+ l z l d y )  
P - . % q = a. &t- .- - (8)  - 

- .  
Ndw & e' & 2 a, (8 )  b8omes ..- -"I 

- p = a e ( i ~ t - h m ~ / . \ / 7 ) ' +  b b i n t . i - m e l I l i ; )  (9) , 
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, , where . . -r If, .- - ' kF,b;z* P : -->. ."- 5. . , 

This i4 the c o m t  -solution satisfying both the boundary contritions at z = 0-&d 
at infhity, whereas when d = 0 &on-magnetic case) the condition a t  infinity is vibbbd:' 
Thornley also points out that the order in which the two limits namely, t -+ ao ' and 
n + 2 Q, are taken cannot be.interehmged--wbn z 7 0 1 (v t )t ) . This dif f idj ,  
also does not arise in our case since A, never vaaislies. 

Now we discuss the particular csse when the hiso is impulsively started in itn *ow 
plane. The solution is directly derived from (7) by putting n = 0 and a + b = 0 (a-real 
constant, say). Hence we get 

where , A = & + ~ A ,  =(ma-+ 2 i Q P  
I ' 

To see h o i  thiboundary l&er op the disc develops and final6 settles down to a steady 
Ekman layer we write the solgtion for small in& large times. Thus for small time t the 
expressions for u and v can be writtedas 

a 
(2 mat + ( ~ )  ' ~ ( ~ 4 - 4 . ~ 1  rza14d 1 (11)' 

i x erfc - - - z +t)+ 2 ( W  "t)f 

and for large time they are 
- 

za 
U - = r z A r l v )  cos (hi z]d) - 

z e - ( x  + " 8 )  

o 2 Ra t ( s  vt)* {maoos2Qt-22sin2Qt) a (13) 
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Just at  the commencement of motion a Rayleigh lt4yer unaffected by the magnetic 
field develops an the;&= which is* reprdsented by the Mt term 'cif (1 I). At large times a ' 
stead$. modified Ekman layer is formed whose thickness is of O(e) 

where 
a, 

This thickness decreases as the magnetic field strength increases. The oscillatory 
part given by the second term of each f 12) and (13) die out with time and the incream in 
the field. 

The tangential foroe per unit area on the disc is given by 
i 

and, as t -+ oo we have (corresponding to Ekman layers) 

- - 
A C K N O W L E D G E M E N T  

- 
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