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The problem of torsional oscillations of & semi- infinite perfectly conducting elastic medium Wlth
an applied magnetic field normalto the boundary due to (4) an impulsive load, (if) step load, and
(¢43) sinusoidal load are solved. In-the case ofimpulsive loading over a circular region, the duration
of disturbance at a point is greater than in the case_ of a purely elastic material. The width of .
distribution is the same in both the cases, . .

The electromagnetic effects on stress wave pr’opagation is of interest for a seismologist. -
Various wave problems are solved in magnetoelasticity and reviewedX. -The problems of
torsional vibrations of & semi-infinite medium- under surface loadings and prescribed
‘ dlsPlacement ot the surface are disoussed?,3,. due to their applications in structural
engineering, studies on earthquakes ete. In this paper the problem of torsional “
vibrations of a semi-infinite perfectly conducting medium when a large magnetic field
is applied normal to the surface have been studied. In the case of impulsive loading over a
circular region, the duration and region of disturbance at a point are greater than in the case
of a purely elastic material, The width of disturbance is the same always. The expressions
for displacement, stress components and secondary magnetic field near the epicentral
line and near the surface are given. The results, when the 1oad1ng is either a step function
or sinusoidal in time, are also given. The refults can be extended to anisotropic material
without any dlfﬁculty2 :

i

STATEMENT OF THE-PROBLEM AND SOLUTION

‘The cylindrical coordinate system (r, 6, z) is used such that the material medium is
glven by # 2 0 and the origin coingides with the centre of application of the surface force.
It is assumed that the displacement component, induced electric and magnetic fields are
of the same order of smallness so that their’ “products and derivatives are negligible.
When the displacement currents are neglected in comparison with conduction currents,
the linearised equations of motion:are givenby
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The ma.gnetlc permeabﬂﬁ:y of the medmm is. assumed to be unity approximately.
The axisymmetric displacement is given? by. - ;
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where ¢, , tg , 42 are the unit vectors at a pomt m &yhnd;:mal ooordma.tes. ‘

The induced electric and magnetwﬁeldsare
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It is to be noted that « hes between zero and unity and itis very near to umty = In%m
o the case of a purely elastic material. Using Laplace’s transform with repect to ?‘
and: Hankel transform of order unity with respéct to R defined by
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for which the solution that remains finite as Z - ¢o, is
| T =@t o . (8)

Where A is a constant of mtegratlon



The boundary uondltmns are :
() oontmmty of the normal component of the magnetlc field,
(45) contmmty of the tangential component of the electric field,
and (m) continuity “of the total stresses at the bomidary
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pénmts;»stress components.and, the magnetic field are
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)  PARTIOULAR Cism

Impulsive Swface Load*: Inithis case;the surface load is’
B, y= Rz(f) 8(t) . -
= Bi(B) 8 {a T )* } 1 a3)
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In the gegion B < 1 —y, there is only a constant c;reumfemntlal shear strain
but no wave motion, When y is dpss than unity“theré will be & eonstant strain
upto B = 1—y and from then onwards and upto R = 1+y, there will be time depen-.
dent disturbance. Fory > 1, the region of disturbance isy —1 <R <y + 1. In
this case, the width of disturbance remains the same for all y. The values of y in this
case ave greater than its value corresponding to the purely elastic material. Henge-
the region of disturbance in the magnetoelastic case is greater than that of purely
elastic material, because x < 1. The duratlon of dlsturbance i3 giyen by

( (B—1)? + o222 ) <T< ( (R + 1)? + o222 )§

The wave arrives early and departs early in this case. The duration of disturbance i in this
case, t,, is given by
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whereas the duration of disturbance ¢,, when the magnetic effects are absent is
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Hence the duration of dfsturbance in & magnetoelastw case is more,
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The nonvanishing stress components are givén by
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(¢) Near the surface : The results for this case can be obtamed by treatmg Z to be
small and on making the s1mp11ﬁcat1ons, we get from (15) and (16)
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The above quantltles va.msh when T <z -
(b) Step Loading = .. » e
In this case, (9) ig writtén as- = O S
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. The displacement U(R Z,T) from (10) can be Seen to be
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(¢) Sinusoidal Loadmg R
In this case, (9) is ta.ken to be e ;o }
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and the dstlacement (10) can be Wntten ag
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